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Vorwort

Dieses Skript ist im Rahmen der gleichnamige Vorlesung entstanden, die
ich im WS 2003/04 an der Universität Paderborn gehalten habe. Ähnliche
Vorlesungen – allerdings mit etwas anderen Schwerpunkten – habe ich bereits
früher an verschiedenen Universitäten gehalten. Eine der Grundlagen dieser
früheren Vorlesungen war das Buch von Glynn Winskel [11]. Die Vorlesung im
WS 2003/04 habe ich zwar vollkommen neu überarbeitet und teilweise auch
anders aufgebaut. Aber ihr Ursprung im Buch von Glynn Winskel [11] ist
noch deutlich sichtbar. Darüber hinaus habe ich natürlich anderes Material
benutzt, von dem ich besonders das Buch von Eike Best [2] hervorheben
möchte.

Dieser Text ist allerdings noch weit davon entfernt, ein vollständiges Buch
zum Thema

”
Semantik“ zu sein. Es ist an vielen Stellen noch unvollständig

und enthält wahrscheinlich noch eine Menge Fehler. Viele interessante Be-
merkungen und Querbezüge zu anderen Bereichen der Informatik (z. B. der
Logik, der Programmverifikation, der Algebraischen Spezifikation) sind nur
durch kurze Randbemerkungen angedeutet. Als Begleitmaterial zur Vorle-
sung ist es aber sicher schon recht hilfreich. Im Rahmen zukünftiger Vorlesun-
gen werde ich dieses Skript weiter überarbeiten und langsam vervollständigen
und Fehler beseitigen. Übungsaufgaben zu der Vorlesung und teilweise auch
Musterlösungen sind über das WWW verfügbar.

Auch wenn dieses Skript sicher noch fehlerhaft ist, so enthält es schon deutlich
weniger Fehler als im ersten Entwurf. Dies habe ich den Studierenden aus
der Vorlesung zu verdanken, die mich auf Fehler hingewiesen haben. Auch
Florian Klein hat sich eine Vorversion dieses Skriptes angesehen und mich auf
diverse Fehler hingewiesen. Dafür möchte ich mich an dieser Stelle bedanken.

Paderborn, im Februar 2004,
Ekkart Kindler
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Vorwort zur überarbeiteten Fassung

Im WS 2004/05 werde ich das Skript nochmals überarbeiten und dabei wei-
tere Fehler und Unklarheiten beseitigen. Spezieller Dank geht an Matthias
Tichy, der mich mit seinem annotierten Skript auf einige Fehler und Unklar-
heiten hingewiesen hat.

Paderborn, im WS 2004/05,
Ekkart Kindler
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2 Semantik der Ausdrücke . . . . . . . . . . . . . . . . . . . . . 27

2.1 Zustände . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Auswertungsrelation für arithmetische Ausdrücke . . . 28
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Kapitel 1

Einführung

1 Der Begriff Semantik

Unter Semantik versteht man ursprünglich
”
die Lehre von der Bedeutung

sprachlicher Zeichen“ [4] und Zeichenfolgen, und damit ein Teilgebiet der
Linguistik. Oft versteht man unter Semantik auch die Bedeutung eines Wor-
tes oder eines Satzes. In der Informatik versteht man unter Semantik ins-
besondere die Bedeutung eines Programms. In der Informatik versteht man
dementsprechend unter Semantik die Lehre und Wissenschaft von der Be-
deutung von Programmen oder allgemein der Bedeutung von syntaktischen
Konstrukten der Informatik. Sie beschäftigt sich mit Techniken, die es erlau-
ben, einem Programm oder einem syntaktischen Konstrukt einer bestimmten
Sprache eine Bedeutung zuzuordnen.

Im Sprachgebrauch der Informatik versteht man unter
”
Semantik“ je nach

Kontext verschiedene Dinge:

Semantik eines Programms: Eine einem konkreten Programm zugeord-
nete Bedeutung.

Semantik einer Programmiersprache: Eine Abbildung jedes syntaktisch
korrekten Programms einer konkreten Programmiersprache auf dessen
Bedeutung.

Semantik von Programmiersprachen: Die Techniken die man zur De-
finition der Semantik verschiedenartiger Programmiersprachen heran-
ziehen kann; also das Teilgebiet der Informatik.

3



4 KAPITEL 1. EINFÜHRUNG

Die Vorlesung beschäftigt sich – wie der ausführliche Name zeigt – mit dem
letzten Verständnis des Begriffs Semantik. Als Beispiele werden wir aber
immer wieder die Semantik konkreter Programme und konkreter Program-
miersprachen1 betrachten. Nachfolgend betrachten wir diese unterschiedli-
chen Bedeutungen des Begriffs Semantik noch etwas ausführlicher anhand
von Beispielen.

1.1 Semantik eines Programms

Wir betrachten dazu ein konkretes Programm2 in einer pseudoprogrammier-
sprachlichen Notation.

Beispiel 1.1 (Die Fakultätsfunktion)
Wir betrachten das folgende Programm:

function f a c ( x : nat ) : nat
i f x = 0 then 1

else x ∗ f a c (x−1)

Auch, wenn jeder Informatiker sofort sieht, daß dieses Programm die Fa-
kultätsfunktion berechnet, handelt es sich zunächt nur um reine Syntax. Die
Semantik dieses Programms formulieren wir in Mathematik:

f : N → N
n 7→ n!

Man schreibt dann oft auch JfacK = f um auszudrücken, daß dem Programm
fac die Semantik f zugeordnet wird.

In diesem Beispiel erscheint die Angabe einer Semantik noch reichlich über-
flüssig zu sein. Im Laufe der Vorlesung werden wir aber noch einige Fein-
heiten kennen lernen, die erst bei einer genauen Formulierung der Semantik
erkennbar werden. Ein Beispiel für solche Feinheiten folgt sofort.

Beispiel 1.2 (Eine Funktion höherer Ordnung)
Wir betrachten eine Funktion, die eine Funktion als Parameter besitzt:

1Meist sind dies sehr einfache Programmiersprachen, um uns nicht in den Details prak-
tischer Programmiersprachen zu verlieren, sondern um uns auf die Techniken der Semantik
zu konzentrieren.

2Der Einfachheit halber betrachten wir hier sogar nur eine Funktionsdeklaration.
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function G( H: function ( i n t ) : int , x : i n t ) : i n t
H(x) − H(x )

Offensichtlich ist die Semantik dieses Programms eine Abbildung, die als
Parameter eine partielle Abbildung h und eine Zahl n als Argumente nimmt
und als Ergebnis h(n)−h(n) ausgibt. Das Ergebnis ist immer 0. Die Semantik
dieses Programms können wir also wie folgt formulieren:

g : ((Z ⇀ Z)× Z) ⇀ Z
(h, n) 7→ 0

Dabei steht ⇀ für eine (potentiell) partielle Abbildung, d. h. für eine Abbil-
dung, die nicht (unbedingt) auf allen Argumenten definiert ist. Wir schreiben
wieder JGK = g.
Diese Semantik g liefert für jedes Argument das Ergebnis 0. Die Frage ist
nun, ob wir das bei diesem Programm auch wirklich so erwarten würden.
Angenommen G bekommt eine Abbildung h und einen Wert n als Argu-
mente, für die h(n) nicht definiert ist, d. h. daß die Auswertung von h für
Argument n nicht terminiert. Dann würde der Ausdruck H(x)−H(x) bei ei-
ner operationalen Auswertung nicht terminieren – also kein Resultat liefern.
Für solche Argumente entspricht die obige Semantik also nicht ganz unserer
Erwartung. Wir sollten g dementsprechend etwas anders definieren:

(h, n) 7→
{

0 falls h(n) definiert ist
undef sonst

1.2 Semantik einer Programmiersprache

Im vorangegangen Abschnitt haben wir die Semantik eines bzw. zweier Pro-
gramme kennen gelernt. Wenn wir die Semantik einer Programmiersprache
definieren, legen wir damit eine (totale) Abbildung fest, die jedem syntaktisch
korrekten Programm einer bestimmten Programmiersprache seine Semantik
zuordnet. Es geht also um die Abbildung von

”
Syntax“ auf

”
Semantik“.

Die Notation für diese Abbildung haben wir bereits im vorangegangenen
Abschnitt eingeführt: Die Semantikklammern J.K. Letztendlich verbirgt sich
dahinter genau eine Abbildung, die jedem Programm P (Syntax) einer Pro-
grammiersprache ein semantisches Objekt zuordnet (Semantik). Wie die se-
mantischen Objekte aussehen und wie man eine solche Abbildung präzise
definieren kann, ist Gegenstand dieser Vorlesung.
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... Hier fehlt noch eine Graphik, die die Abbildung verdeutlicht.

Die Zuordnung einer Semantik zu einem Programm entspricht genau der Zu-
ordnung zwischen der Repräsentation einer Information und der Information
selbst: die Interpretation.

1.3 Semantik von Programmiersprachen

Unter Semantik von Programmiersprachen versteht man die Summe aller
Techniken zum Definieren von Semantiken konkreter Programmiersprachen
und zum Argumentieren über diese Semantiken. Dabei werden verschiedene
Konzepte – insbesondere die Induktion und die Fixpunkttheorie – implizit
oder explizit immer wieder benutzt. Diese Konzepte werden wir im Laufe der
Vorlesung identifizieren, formalisieren und Zusammenhänge zwischen ihnen
herstellen.

2 Ansätze

Es gibt verschiedene Ansätze, wie man einem Programm eine Semantik zu-
ordnen kann. In diesem einführenden Kapitel verschaffen wir uns zunächst
einen Überblick über diese verschiedenen Ansätze.

2.1 Operationale Semantik

Zunächts betrachten wir die operationale Semantik für eine einfache impera-
tive Sprache. Die operationale Semantik wird über das schrittweise Verhalten
des betrachteten Programms definiert. Wir machen uns das anhand eines ein-
fachem Beispielprogrammes deutlich:

Beispiel 1.3 (Eine Schleife)
Wir betrachten das folgende Programm c

c ≡ while x > 0 do x:= x−1 od

und einen Startzustand σ = [x/2] (in diesem Zustand hat die Variable x den
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Wert 2). Nun arbeiten wir das Programm schrittweise ab:

〈c, [x/2]〉 → 〈x := x− 1; c, [x/2]〉 →
〈c, [x/1]〉 →
〈x := x− 1; c, [x/1]〉 →
〈c, [x/0]〉 →
〈skip, [x/0]〉 6→

Wir beginnen dabei mit der Abarbeitung des Programms c im Zustand [x/2].
Zunächst wird die Schleifenbedingung x > 0 ausgewertet. Im betrachteten
Zustand ist diese Bedingung wahr. Dementsprechend muß der Schleifenrumpf
x:= x − 1 einmal ausgeführt werden und danach die Schleife c erneut aus-
geführt werden. Deshalb fahren wir im nächsten Schritt mit der Abarbeitung
des Programms x:= x − 1; c fort; da die Auswertung der Bedingung den Zu-
stand nicht verändert, setzten wir die Berechnung im gleichen Zustand fort.
Nun ist x:= x − 1 die erste Anweisung; die Abarbeitung führt zum Zustand
[x/1]. Danach müssen wir nur noch die Anweisung c ausführen, also die
Schleife von vorne ausführen. Nach zwei weiteren Schritten müssen wir dann
die Schleife im Zustand [x/0] ausführen. Dazu wird wieder die Schleifenbedin-
gung ausgewertet, was in diesem Zustand das Ergebnis falsch liefert. Deshalb
wird die Schleife beendet und mit der Abarbeitung des Programmes nach der
Schleife fortgefahren. Da dort nichts steht, schreiben wir skip für das leere
Programm, für das natürlich keine weiteren Schritte mehr ausgeführt werden
können. Ingesamt endet das Programm also im Zustand [x/0], wenn es im
Zustand [x/2] gestartet wird.

Die einzelnen Übergänge müssen natürlich für alle Konstrukte der Program-
miersprache definiert werden. Wie dies geht, werden wir später sehen. Das
wichtige bei der operationalen Semantik ist, daß wir ein gegebenes Programm
c ausgehend von einem Anfangszustand σ schrittweise

”
simulieren“ bzw.

”
in-

terpretieren“ und – wenn das Programm terminiert – irgendwann das Ergeb-
nis erhalten.

2.2 Mathematische (denonationale) Semantik

Ein Problem bei der Definition der operationalen Semantik ist, daß wir streng
genommen nicht dem Programm eine Semantik zuordnen, sondern immer
nur einem Programm in einem Zustand. Schöner und eleganter wäre es, dem
Programm insgesamt eine Semantik zuzuordnen. Wenn man das ordentlich
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machen will, benötigt man etwas mathematisches Handwerkszeug, was wir
uns erst im Laufe der Vorlesung erarbeiten werden. Deshalb geben wir hier
nur das Endergebnis für das Beispiel 1.3 an. Da das Programm nur eine
Variable besitzt, können wir den Zustand des Programms als eine ganze
Zahl (den Wert der Variablen x) darstellen. Die mathematische Semantik
des Programms ist eine partielle Abbildung, die jedem Anfangszustand den
zugehörigen Endzustand des Programms zuordnet, wenn das Programm ter-
miniert; ansonsten ist die Funktion für den Anfangszustand undefiniert (in
unserem Beispiel terminiert das Programm aber immer). Die mathematische
Semantik können wir also wie folgt definieren:

JcK : Z ⇀ Z

n 7→
{

0 für n ≥ 0
n sonst

Nun haben wir zwei Semantiken für das Programm c definiert: die operatio-
nale und die mathematische Semantik. Natürlich sollten diese beiden Seman-
tiken etwas miteinander zu tun haben. Tatsächlich sind die Techniken zum
Formulieren und Beweisen von Beziehungen zwischen verschiedenen Seman-
tiken auch Gegenstand des Gebietes Semantik und der Vorlesung. Für die
beiden Semantiken unserer Programmiersprache sollte für alle Programme c

gelten:

JcK(n) = m gdw. 〈c, [x/n]〉 → . . . → 〈skip, [x/m]〉

Daß das stimmt, kann man sich für dieses Beispiel leicht überlegen. Allge-
meine Techniken zum Beweis derartiger Eigenschaften werden wir erst später
kennen lernen.

2.3 Axiomatische Semantik

Als letzte Beispiel betrachten wir die axiomatische Semantik. Diese axioma-
tisiert Eigenschaften von Programmen, wobei die Eigenschaft durch Vor- und
Nachbedingungen formuliert sind, die auch. Zusicherungen genannt werden.
Dazu betrachten wir wieder das Programm c aus Beispiel 1.3. Wenn der Wert
der Variablen vor Ausführung des Programms while x > 0 do x:= x − 1 od
größer als 0 ist, dann ist bei Terminierung des Programmes der Wert der Va-
riablen x der Wert 0 (wir setzen voraus, daß x eine Variable vom Typ integer
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ist). Als Zusicherung notieren wir diese Eigenschaft wie folgt:

{x ≥ 1} while x > 0 do x:= x − 1 od {x = 0}

Dabei ist {x ≥ 1} die Vorbedingung, unter der das Programm am Ende die
Nachbedingung {x = 0} erfüllt.
Die axiomatische Semantik gibt nun Regeln an, mit deren Hilfe alle gülti-
gen Zusicherungen bewiesen werden können. Sie beschreibt damit implizit
die Bedeutung eines Programmes mit Hilfe seiner Eigenschaften und stellt
somit den Zusammenhang zur Programmverifikation her. Natürlich gibt es
sehr viele gültige Zusicherungen für ein Programm, im allgemeinen unendlich
viele. Beispielsweise gilt für unser Beispiel auch die Zusicherung

{x = n ∧ x < 0} while x > 0 do x:= x − 1 od {x = n}

d. h. wenn der Wert von x vor Ausführung des Programms n ist und außerdem
kleiner als 0 ist, dann ist der Wert von x am Ende auch n.
Auch diese Semantik hat natürlich einen Bezug zur operational und zur ma-
thematischen Semantik. Im wesentlichen ist dieser Bezug die Formalisierung
der Bedeutung von Zusicherungen mit Hilfe der operationalen oder der ma-
thematischen Semantik. Dies werden wir aber erst später präzisieren.

2.4 Diskussion der Ansätze

Neben den drei oben vorgestellten Ansätzen, gibt es noch eine Reihe wei-
terer Möglichkeiten einer Programmiersprache eine Semantik zuzuordnen.
Beispielsweise kann man einer Programmiersprache auch eine Semantik zu-
ordnen, indem man eine Übersetzung in eine andere Programmiersprache
mit bereits definierter Semantik angibt (Übersetzersemantik). Der Grund
für die Existenz der verschiedenen Ansätze ist, daß die Definition einer Se-
mantik verschiedenen Zwecken dienen kann:

• Präzisierung der informellen Semantik einer Programmiersprache

• Verständnis einer neuen Programmiersprache

• Konstruktion von Compilern

• Untersuchung der grundlegenden Konstrukte einer Programmierspra-
che
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• Basis für die Verifikation

• Grundlegendes Verständnis für programmiersprachliche Konstrukte

• ...

Je nach dem Zweck, der mit der Definition einer Semantik verfolgt wird,
sind bestimmte Ansätze besser oder schlechter geeignet. Beispielsweise ist
die Axiomatische Semantik für die Verifikation besonders gut geeignet.

3 Das Dilemma der Semantik

Bei der Definition einer Semantik wird einem
”
Stück Syntax“ (konkret ei-

nem Programm) ein
”
Stück Semantik“ (konkret eine Abbildung) zugeord-

net. Bei genauer Betrachtung steht aber auf der
”
semantischen Seite“ auch

wieder
”
nur“ Syntax. Beispielsweise haben wir für unser erstes Beispiel (die

Fakultätsfunktion) die Semantik wie folgt definiert:

f : N → N
n 7→ n!

Zur Formulierung der mathematischen Abbildung haben wir aber wieder
Symbole, also Syntax, benutzt: N,→, 7→ und !. Dies sind zwar nicht die Sym-
bole aus der Programmiersprache, sondern Symbole aus der Mathematik, die
uns bereits in der Schule vertraut gemacht wurden und deren Bedeutung wir

”
kennen“. Streng genommen müßten wir aber zunächst die Semantik dieser

Symbole definieren, bevor wir sie benutzen können, um eine Semantik für
eine Programmiersprache zu definieren. Wenn wir nun mit einer Formalisie-
rung dieser Symbole beginnen, werden wir schnell feststellen, daß wir mit
dem Formalisieren nie fertig werden, denn wir werden immer neue Symbole
einführen, deren Bedeutung wir dann wieder definieren müssen. Letztend-
lich müssen wir immer Symbole benutzen, um Sachverhalte zu formulieren.
Tatsächlich ist dies auch kein spezielles Problem der Semantik, sondern ein
fundamentales Problem der Mathematik und der Philosophie. Und auch dort
läßt sich dieses Problem nicht wirklich lösen.
Die Lösung im Rahmen des Gebietes der Semantik besteht nun darin, daß wir
davon ausgehen, daß wir ein bestimmtes Gebiet der Mathematik so gut ken-
nen und ein gemeinsames Verständnis darüber besitzen, daß es nicht nötig ist,
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es weiter zu formalisieren. Man sagt, daß wir von diesem Gebiet eine gemein-
same Pragmatik besitzen. Für uns ist die gemeinsame Pragmatik im wesent-
lichen die

”
Schulmathematik“. Der Rückzug auf eine gemeinsame Pragmatik

ist zwar keine wirkliche Lösung des oben beschriebenen Problems, aber eine
sehr

”
pragmatische“ Lösung – insbesondere da wir wissen, daß wir das Pro-

blem prinzipiell nicht lösen können. Wir sollten uns bei der Definition von
Semantiken immer bewußt machen, daß das Zielpublikum, für das wir eine
Semantik formulieren, die gleiche Pragmatik für die von uns benutzten Sym-
bole besitzen muß – ansonsten ist die Definition der Semantik bedeungslos
und damit sinnlos.

4 Inhalt der Vorlesung

In der Vorlesung werden wir uns mit den verschieden Ansätzen zur Definition
von Semantiken einer Programmiersprache beschäftigen und die grundlegen-
den Techniken dazu kennen lernen. Dabei spielen induktive Definitionen und
Beweise sowie Fixpunkte eine zentrale Rolle. Wir werden sogar feststellen,
daß beide Konzepte sehr eng zusammenhängen. Insgesamt orientieren wir
uns dabei sehr stark am Buch von Glynn Winskel [11].
Der Schwerpunkt der Vorlesung liegt dabei auf den Konzepten zur Definition
von Semantiken. Die konkret definierten Semantiken dienen nur der Veran-
schaulichung und Einübung dieser Techniken. Die Programmiersprachen, die
wir dazu betrachten, sind sehr minimalistisch, da die Definition der Seman-
tik von realistischen Programmiersprachen sehr aufwendig ist und die vielen
technischen Details einer realistischen Programmiersprache den Blick auf die
wesentliche Semantischen Konzepte verstellen. Am Ende der Vorlesung sind
wir aber prinzipiell in der Lage auch Semantiken für realistische Program-
miersprachen zu formulieren. Ein Beispiel für die Definition einer Semantik
einer realistischen Programmiersprache findet sich in dem Buch von Elfriede
Fehr [5].
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Kapitel 2

Grundlegende Begriffe und
Notationen

In diesem Kapitel führen wir Begriffe und Konzepte ein, die als bekannt vor-
ausgesetzt werden. Sie stellen also die gemeinsame Pragmatik dar, die wir
als Ausweg aus dem Dilemma der Semantik benötigen. Die Begriffe selbst
sollten aus der Schule oder spätestens aus den Vorlesungen des Grundstudi-
ums bekannt sein. Da jedoch die Notationen für bestimmte Konzepte nicht

”
normiert“ sind, legen wir im folgenden die von uns benutzte Notation fest.

Nebenbei frischen wir die Kenntnisse über die zugrundeliegenden Begriffe
und Konzepte auf.

1 Mengen

Der fundamentalste Begriff, auf dem wir aufbauen, ist der Begriff der Menge.
Tatsächlich würde eine fundierte Einführung dieses Begriffes eine eigene Vor-
lesung erfordern. Für uns genügt aber im wesentlichen das naive Verständnis
des Mengenbegriffes, der bereits in der Schule vermittelt wurde: Eine Zusam-
menfassung oder Ansammlung von Elementen. Dem interessierten Leser sei
jedoch die Lektüre eines Buches zur Mengenlehre empfohlen (z. B. [6]).
Wenn ein Element x zu einer Menge X gehört, schreiben wir dafür x ∈ X;
wenn x nicht zu der Menge X gehört, schreiben wir x 6∈ X.
Einige Mengen haben eine besondere Bedeutung, so daß wir eine eigne Be-
zeichnung für diese Mengen einführen:

• ∅ bezeichnet die leere Menge, d. h. die Menge, die kein Element enthält.

13
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• N bezeichnet die Menge aller natürlichen Zahlen (inkl. 0):
N = {0, 1, 2, 3, . . .}.

• Z bezeichnet die Menge aller ganzen Zahlen:
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

• B bezeichnet die Menge der Wahrheitswerte:
B = {true, false}.

Oft wird eine Menge X darüber definiert, daß man die Eigenschaft P (x)
aller ihre Elemente x angibt. Das ist insbesondere bei unendlichen Mengen
erforderlich. Dafür benutzt man die Mengenkomprehension: X = {x | P (x)},
wobei P eine Prädikat über bzw. eine Eigenschaft von Objekten bezeichnet.
Eine Menge X heißt Teilmenge einer Menge Y , wenn für jedes Element x ∈ X
auch gilt x ∈ Y . Wir schreiben dafür X ⊆ Y . Die Menge X heißt echte
Teilmenge von Y , wenn wenigstens ein Element y ∈ Y nicht in X vorkommt
(d. h. y 6∈ X). Wir schreiben dann X ⊂ Y .
Auf Mengen sind verschiedene Operationen definiert. Für zwei Mengen X
und Y bezeichnen

• X ∪ Y die Vereinigung der Elemente der beiden Mengen,
d. h. X ∪ Y = {z | z ∈ X oder z ∈ Y }.

• X ∩ Y den Durchschnitt der Elemente der beiden Mengen,
d. h. X ∩ Y = {z | z ∈ X und z ∈ Y }.

• X \ Y die Differenz der Elemente der beiden Mengen,
d. h. X \ Y = {x | x ∈ X und x 6∈ Y }.

• X × Y das Produkt der beiden Mengen,
d. h. X × Y = {(x, y) | x ∈ X, y ∈ Y }.

Mit |X| bezeichnen wir die Kardinalität oder die Mächtigkeit der Menge. Für
endliche Mengen ist das die Anzahl der Elemente der Menge. Eine unendli-
che Menge hat aber nicht die Kardinalität

”
unendlich“ oder ∞! Denn es gibt

verschiedene unendliche Kardinalitäten. Beispielsweise haben die Menge der
natürlichen Zahlen N und die Menge der reellen Zahlen R verschiedene Kar-
dinalität, genauer |R| > |N|. Allerdings kann eine echte Teilmenge X einer
Menge Y dieselbe Kardinalität haben wie Y . Beispielsweise gilt |N| = |Z|.
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In der Informatik ist die Kardinalität der Menge der natürlichen Zahlen von
besonderer Bedeutung und wir bezeichnen sie mit ω. Mengen mit dieser Kar-
dinalität werden abzählbar genannt. Mengen mit echt größerer Kardinalität
werden überabzählbar genannt.
Für eine Menge X bezeichnet 2X die Menge aller Teilmengen von X, d. h.
2X = {Y | Y ⊆ X}. Wir nennen 2X auch die Potenzmenge von X.

2 Relationen, Ordnungen und Äquivalenzen

Für zwei Mengen X und Y nennen wir eine Teilmenge R ⊆ X × Y eine
Relation über X und Y . Wir betrachten meist Relationen mit X = Y . In
diesem Falle nennen wir R eine (binäre) Relation über X. Für (x, y) ∈ R
schreiben wir dann auch kurz x R y. In vielen Fällen wird die Relation auch
durch einen Pfeil → bezeichnet und wir schreiben dann x → y.
Eine binäre Relation R über X heißt

• reflexiv, wenn für jedes x ∈ X gilt x R x,

• irreflexiv, wenn für kein x ∈ X gilt x R x,

• transitiv, wenn für alle x, y, z ∈ X mit x R y und y R z auch x R z
gilt,

• symmetrisch, wenn für alle x, y ∈ X mit x R y auch y R x gilt,

• antisymmetrisch, wenn für alle x, y ∈ X aus x R y und y R x folgt
x = y und sie heißt

• konnex, wenn für alle x, y ∈ X wenigstens eine der folgenden Bedin-
gungen gilt: x = y oder x R y oder y R x.

Eine reflexive, transitive und antisymmetrische Relation R nennen wir eine
reflexive Ordnung. Für reflexive Ordnungen benutzen wir meist Symbole, die

”
eine Richtung besitzen“ und die Gleichheit enthalten: ≤,�,⊆,v etc. Eine

reflexive Ordnung heißt total oder linear, wenn sie konnex ist, d. h. wenn zwei
beliebige Elemente immer in der einen oder anderen Richtung geordnet sind.

Achtung! Die meisten Ordnungen, die wir kennen, sind linear. Deshalb ist
man schnell geneigt, diese Eigenschaft allen Ordnungen zu unterstellen. Es
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gibt aber Ordnungen, die nicht linear sind. Beispielsweise ist die Teilmen-
genbeziehung auf Mengen ⊆ nicht linear. Der Deutlichkeit halber nennt man
solche Ordnungen dann oft partielle Ordnungen.

Es gibt noch eine zweite Definition von Ordnungen, bei der explizit die
Gleichheit ausgeschlossen wird: Eine irreflexive und transitive Relation R
nennen wir eine irreflexive Ordnung. Für solche Ordnungen benutzt man
ebenfalls Symbole, die

”
eine Richtung besitzen“ aber keine Gleichheit ent-

halten: <,≺,⊂, @ etc. Es ist leicht, eine gegebene reflexive Ordnung in eine
irreflexive Ordnung umzuwandeln und umgekehrt. Man muß dazu nur alle
Paare (x, x) entfernen bzw. hinzufügen.
In der Vorlesung geht meist aus dem Kontext hervor, ob wir über eine re-
flexive oder irreflexive Ordnung reden. Wir reden deshalb oft nur über Ord-
nungen, ohne explizit dazu zu sagen, welche Variante wir meinen. Manchmal
wandeln wir auch implizit eine reflexive Ordnung in eine irreflexive Ordnung
um, wenn das zweckmäßiger ist. Dies entspricht dem Übergang von ≤ zu <.
Eine irreflexive Ordnung ≺ über X heißt wohlgegründet, wenn es keine un-
endlich absteigende Kette x1 � x2 � x3 � . . . von Elementen xi ∈ X gibt.

Nebenbei wird hier ein beliebter Trick mit den gerichteten Symbolen für Ord-
nungen eingeführt: Wir schreiben xi � xi+1 anstelle von xi+1 ≺ xi, d. h. wir
drehen die Symbole um, wenn uns das zweckmäßiger erscheint.

Eine Ordnung � über X wird häufig auch als Paar (X,�) notiert. Für eine
Teilmenge Y ⊆ X definieren wir nun einige weitere Begriffe. Ein Element
x ∈ Y heißt minimal (in Y bzgl. �), wenn kein Element y ∈ Y mit y � x
und x 6= y existiert, d. h. wenn für x kein echter Vorgänger in Y existiert.
Ein Element x ∈ Y heißt das kleinste Element von Y (bzgl. �), wenn für alle
y ∈ Y gilt x � y, d. h. x ist kleiner (oder gleich) als alle anderen Elemente
von Y . Symmetrisch kann man die maximalen und das größte Element einer
Menge bzgl. einer Ordnung definieren.

Achtung! Die Begriffe des minimalen und des kleinsten Elementes werden oft
verwechselt, weil sie für viele uns vertraute Ordnungen zusammenfallen. Wir
müssen diese beiden Begriffe aber sorgfältig auseinander halten. Denn eine
Menge kann bezüglich einer Ordnung nur ein kleinstes Element besitzen (es
ist also eindeutig, wenn es existiert). Dagegen kann eine Menge mehrere mi-
nimale Elemente besitzen. Dieser Unterschied wird später noch sehr wichtig
werden.
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Für eine reflexive Ordnung (X,�) und eine Teilmenge Y ⊆ X heißt ein
x ∈ X eine untere Schranke von Y , wenn für jedes y ∈ Y gilt x � y. Wenn
die Menge der unteren Schranken von Y ein größtes Element besitzt, dann
heißt dieses die größte untere Schranke von Y oder auch das Infimum von
X. Das Infimum von Y wird dann auch mit

∧
Y bezeichnet. Entsprechend

heißt ein Element x ∈ X eine obere Schranke von Y , wenn für jedes y ∈ Y
gilt y � x. Die kleinste obere Schranke von Y heißt auch das Supremum von
Y und wird mit

∨
Y bezeichnet.

Wenn für eine Ordnung (X,�) für jede Teilmenge Y ⊆ X das Infimum
existiert, dann nennen wir diese Ordnung auch einen vollständigen Verband.

Für einen vollständigen Verband wird nur gefordert, daß ”alle Infima“ exi-
stieren. Man kann aber zeigen, daß in einem vollständigen Verband auch
für jede Menge Y das Supremum existiert. In einem vollständigen Verband
existieren also ”alle Infima und Suprema”.

Man kann jede Relation R transitiv machen, indem man alle transitiven
Abhängigkeiten zur Relation hinzufügt. Diese Relation bezeichnen wir dann
mit R+ und wird auch die transitive Hülle von R genannt. Intuitiv ist so-
fort klar, was die transitive Hülle ist. Mathematisch gibt es verschiedene
Techniken, die transitive Hülle zu definieren. Eine Möglichkeit dazu ist, sie
als die kleinste transitive Relation zu definieren, die R umfaßt (dazu muß
man natürlich zeigen, daß für jedes R diese Relation existiert). Ganz analog
ist der Begriff der reflexiv-transitiven Hülle einer Relation R definiert. Es
ist die kleinste reflexive und transitive Relation, die R umfaßt. Die reflexiv-
transitive Hülle von R wird mit R∗ bezeichnet. Zusätzlich zu R+ kommen
noch alle Paare (x, x) zu R∗ hinzu (wg. der Reflexivität).
Eine Relation R heißt Äquivalenzrelation oder kurz Äquivalenz, wenn sie
reflexiv, transitiv und symmetrisch ist.

3 Abbildungen

Eine Relation f über X und Y , für die für jedes x ∈ X genau ein y mit
(x, y) ∈ f existiert, heißt totale Abbildung von X nach Y . Eine Abbildung
f ordnet also jedem Element x ∈ X eindeutig ein Element y ∈ Y zu. Wir
schreiben dafür auch f(x) = y.
Die Menge aller Abbildungen von X nach Y bezeichnen wir mit X → Y und
an Stelle f ∈ (X → Y ) von schreiben wir wie üblich f : X → Y .
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Eine Relation f über X und Y , für die für jedes x ∈ X höchstens ein y ∈ Y
mit (x, y) ∈ f existiert heißt partielle Abbildung. Auch hier schreiben wir
f(x) = y. Der Unterschied zu den totalen Abbildungen ist, daß der Wert f(x)
nicht für jedes x ∈ X definiert ist; wir schreiben dafür auch f(x) = undef .
Wenn für alle x ∈ X gilt f(x) = undef , nennen wir f die überall undefinierte
Abbildung; wir bezeichnen diese Abbildung auch mit Ω.
Die Menge aller partiellen Abbildungen von X nach Y bezeichnen wir mit
X ⇀ Y und wir schreiben auch f : X ⇀ Y für f ∈ (X ⇀ Y ).

Die Definition der partiellen Abbildungen fordert nicht, daß es ein Element
x mit f(x) = undef geben muß. Eine partielle Abbildung kann also total
sein. Tatsächlich ist jede totale Abbildung eine partielle Abbildung im Sinne
der Definition. Das können wir auch als Inklusion formulieren: (X → Y ) ⊆
(X ⇀ Y ) ⊆ 2(X×Y ).

Um diesen sprachlichen Widerspruch etwas abzufedern, sprechen wir im fol-
genden meist von Abbildungen, wenn wir totale Abbildungen meinen und
explizit von partiellen Abbildungen, wenn wir eine (potentiell) partielle Ab-
bildung meinen.

Für zwei partielle Abbildungen f : X ⇀ Y und g : Y ⇀ Z bezeichnet
g ◦ f : X ⇀ Z ebenfalls eine partielle Abbildung, die wie folgt definiert ist
(g◦f)(x) = g(f(x)). Die Abbildung g◦f heißt die Funktionskomposition von
f und g.
Eine Abbildung f : X → Y heißt

• injektiv, wenn für alle x, y ∈ X aus f(x) = f(y) folgt x = y, sie heißt

• surjektiv, wenn für jedes y ∈ Y ein x ∈ X mit f(x) = y existiert, und
sie heißt

• bijektiv, wenn sie injektiv und surjektiv ist.

Eine totale Abbildung kann man definieren, indem man für jedes x ∈ X den
Wert f(x) = e angibt, wobei e ein Ausdruck ist, in dem x als freie Varia-
ble vorkommt und der zu einem Wert aus Y ausgewertet wird. Oft schreibt
man dafür auch x 7→ e (vgl. Beispiele in Kapitel 1). Dadurch ist die Abbil-
dung punktweise (bzw. elementweise) definiert. Diese punktweise Definition
ist aber nicht sehr elegant, da wir die Abbildung nicht am Stück definieren1.

1Darüber werden wir später bei der Einführung der mathematischen Semantik ausführ-
licher sprechen.



3. ABBILDUNGEN 19

Eleganter wäre eine Definition der Form f = . . ., die die Abbildung insgesamt
festlegt. Dazu benutzen wir die Notation des Lambda-Kalküls. Wir schreiben
f = λ x ∈ X . e, wobei e ein Ausdruck ist, der zu einem Wert aus Y ausge-
wertet wird. Mit dieser Notation können wir beispielsweise die Quadrierung
wie folgt definieren:

f = λ x ∈ Z . x ∗ x

Der Lambda-Operator λ dient dazu, den Definitionsbereich der Abbildung
zu bennenen und eine Bezeichnung festzulegen, mit der man im Ausdruck
auf den aktuellen Parameter der Abbildung Bezug nehmen kann. Den Wert
der Abbildung für einen konkreten Parameter können wir dann wie folgt
ausrechnen:

f(7) = (λ x ∈ Z . x ∗ x)(7) = 7 ∗ 7 = 49

λ x ∈ X . e entspricht in Programmiersprachen dem Konzept der namenlosen
Funktionen oder dem Konzept der namenlosen Klassen in Java. Wir können
eine Abbildung definieren, ohne sie zu benennen. Erst durch die Gleichung
f = λ x ∈ X . e ordnen wir der Abbildung den Namen f zu.

...
Evtl. wird dieses Kapitel später um weitere Begriffe erweitert.
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Kapitel 3

Operationale Semantik

In diesem Kapitel werden wir eine Technik zur Definition von operationalen
Semantiken kennenlernen. Diese Technik wird am Beispiel der Semantik für
eine einfache imperativen Programmiersprache IMP vorgeführt. Dazu führen
wir zunächst die Syntax dieser Sprache ein. Danach definieren wir der Reihe
nach die Semantik der verschiedenen programmiersprachlichen Konstrukte:
arithmetische Ausdrücke, boolesche Ausdrücke und Anweisungen. Am Ende
werden wir dann verschiedene Varianten der Semantik diskutieren.
Insgesamt werden wir dabei eine Technik zur Definition einer operationalen
Semantik kennenlernen und zur Argumentation über diese.

1 Die Programmiersprache IMP

In diesem Abschnitt definieren wir die Syntax der einfachen imperativen Pro-
grammiersprache IMP. Diese Programmiersprache enthält die üblichen pro-
grammiersprachlichen Konstrukte Sequenz, bedingte Anweisung und Schleife
und die Zuweisung eines Wertes an eine Variable. Bevor wir die Syntax formal
definieren, betrachten wir ein Beispiel:

Beispiel 3.1 (Euklids Algorithmus)
Das folgende Programm berechnet den größten gemeinsamen Teile (ggT)
zweier positiver ganzer Zahlen x und y:

i f (1 < x )∧(1 < y ) then
while ¬( x = y ) do

i f x ≤ y then y := y − x else x := x − y

21
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else
p x := 0 ; y := 0 y

1.1 Syntax

In diesem Programm kommen Konstanten und Variablen vor, aus denen
arithmetische und boolesche Ausdrücke gebildet werden. Die booleschen Aus-
drücke werden ihrerseits benutzt, um daraus die bedingte Anweisung und die
Schleife zu konstruieren. Dieser Konstruktion liegt das Prinzip der induktiven
Definition zugrunde.
Der Einfachheit halber lassen wir in unserer Programmiersprache nur Va-
riablen der Sorte integer bzw. der ganzen Zahlen zu. Für Konstanten und
Variablen werden wir uns nicht einmal die Mühe machen, deren konkrete
Syntax zu definieren. Wir gehen einfach davon aus, daß wir diese Konstrukte
irgendwie syntaktisch ausdrücken können. Konkret heißt das für die Spra-
che IMP, daß wir die ganzen Zahlen Z und die Menge der Wahrheitswerte
B

”
irgendwie“ syntaktisch ausdrücken können. Die Menge der Programmva-

riablen bezeichnen wir mit V. In unserem obigen Programm haben wir x
und y als Programmvariablen benutzt. Aber wir werden je nach Bedarf auch
weitere Bezeichnungen einsetzen, z. B. ggt oder result . Damit wir immer ge-
nug Programmvariablen zur Vefügung haben, muß V nur genügend groß sein,
nämlich abzählbar.
Für die weiteren Konstrukte geben wir später eine Syntax in Backus-Naur-
Form (BNF) an. Damit wir nicht jedes mal sagen müssen, für welche syntakti-
sche Menge bzw. Kategorie ein Symbol steht, legen wir für alle syntaktischen
Kategorien bestimmte Symbole fest. Dabei steht Aexp für die syntaktische
Menge bzw. Kategorie der arithmetischen Ausdrücke, Bexp für die boole-
schen Ausdrücke und Com für die Anweisungen (bzw. Programme) der Pro-
grammiersprache IMP.

Kategorie Symbole Varianten
Z n, m n0, n1, n2, . . . , n

′, m′, . . .
B t t0, t1, t2, . . . , t

′, t′′, . . .
V u, v v0, v1, v2, . . . , u

′, v′, . . .

Aexp a a0, a1, a2, . . . , a
′, a′′, . . .

Bexp b b0, b1, b2, . . . , b
′, b′′, . . .

Com c c0, c1, c2, . . . , c
′, c′′, . . .
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Die Syntax für Aexp, Bexp und Com werden wir nachfolgend definieren.
Dabei nutzen wir aus, daß bestimmte Symbole für ein syntaktisches Ob-
jekt einer bestimmten Kategorie gehören. Beispielsweise stehen a0 und a1 für
arithmetische Ausdrücke. Im Gegensatz zu der sonst üblichen Form der BNF
unterscheiden wir durch einen Index das mehrfache Auftreten von Objekten
derselben syntaktischen Kategorie. Dies ermöglicht es uns, später bei der De-
finition der Semantik direkt auf die richtigen Objekte zu verweisen.

Aexp: a ::= n | v | a0+a1 | a0−a1 | a0∗a1

Bexp: b ::= t | a0 = a1 | a0 ≤ a1 | ¬ b0 | b0 ∧ b1 | b0 ∨ b1

Com : c ::= skip | v := a0 | c0 ; c1 |
if b0 then c0 else c1 | while b0 do c0

Beispiel 3.2 (Beispiele für syntaktische Konstrukte)
Wir betrachten nun einige Beispiele für syntaktische Objekte der verschiede-
nen Kategorien:

1. Arithmetische Ausdrücke aus Aexp:

• 3 + 5 und 5 + 3

• 4711 und 04711

• x − 7 + 3 (Auf ein Problem mit diesem Ausdruck werden wir wei-
ter unten noch eingehen)

• x ∗ y

2. Boolesche Ausdrücke aus Bexp:

• true und false

• 3 ≤7

7 ≥3 und 7 > 3 sind gemäß unserer Definition keine booleschen
Ausdrücke. Wir werden sie später – wenn wir Syntax nicht mehr
ganz so ernst nehmen – in Beispielen aber als Abkürzung zulassen.
Beispielsweise steht dann x > y für (y ≤ x) ∧ ¬ (x = y).

• ¬ 3 ≤ x

• x = 8 ∧y ≤27
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3. Anweisungen aus Com: Das Programm aus Beispiel 3.1 ist eine korrekte
Anweisung. Auch das folgende Programm ist eine korrekte Anweisung:

z := 1 ;
y := 1 ;
while y ≤ x do

z := y ∗ x ;
y := y + 1

Aber auch über diese Anweisung werden wir noch diskutieren müssen.

1.2 Abstrakte und konkrete Syntax

Wie schon angedeutet gibt es mit der Definition unsere Syntax noch ein Pro-
blem. Dazu betrachten wir nochmals den arithmetischen Ausdruck x − 7 + 3.
Denn diesen Ausdruck können wir gemäß der BNF auf zwei verschiedene Wei-
sen bilden: Zunächst bilden wir die drei Ausdrücke a0 ≡ x, a1 ≡ 7 und a2 ≡ 3.
Aus a0 und a1 können wir dann den Ausdruck a3 ≡ x − 7 und zusammen
mit a2 dann den Ausdruck a4 ≡ x − 7 + 3 bilden. Wir können aber auch
erst den Ausdruck a′3 ≡ 7 + 3 und dann zusammen mit a0 den Ausdruck
a′4 ≡ x − 7 + 3. Je nach dem wie wir die Ausdrücke gebildet haben besitzen
sie eine andere Struktur, die wir wie folgt durch (geordnete1) Bäume darstel-
len können:

7x

+

− 3

a 4

+

3

x

7

−

a’ 4

Dieselbe Zeichenreihe x − 7 + 3 bezeichnet also zwei verschiedene Bäume
und damit zwei verschiedene Ausdrücke, die zu allem Überfluß auch noch
verschiedene Ergebnisse liefern, wenn man für x einen Wert einsetzt.

1Ein Baum heißt geordnet, wenn auf den Kindern jedes Knotens eine Ordnung definiert
ist. Bei uns ist diese Ordnung durch die Leserichtung von links nach rechts definiert.
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Dasselbe Problem tritt auch bei der Definition von Anweisungen auf. Die
Teilanweisung while y ≤ x do z:= y ∗ z; y:= y + 1 können wir gemäß der
BNF auf zwei verschiedene Weisen aufbauen:

. ; .

while . do . y:= y+1

while . do .

y <= x

y <= x . ; .

z:= y*zz:= y*z y:= y+1

Je nach Interpretation verhalten sich die beiden Programme sehr unterschied-
lich, weil die Anweisung y:= y + 1 im einen Fall zur Schleife gehört, im an-
deren aber nicht.
Es gibt verschiedene Möglichkeiten, dieses Problem zu Lösen.

1. Die ordentliche Lösung benutzt Techniken aus dem Gebiet des Über-
setzerbaus bzw. der formalen Sprachen. Man kann durch verschiedene
Techniken dafür sorgen, daß die Grammatiken eindeutig sind und es
für jede Zeichenreihe, die von der Grammatik erzeugt wird, nur einen
Ableitungsbaum gibt. Allerdings werden die Grammatiken dann meist
sehr viel aufwendiger.

Da Syntaxanalyse und Übersetzerbau nicht das Thema dieser Vorlesung
sind, verfolgen wir diesen Ansatz hier nicht weiter, sondern suchen uns
einen

”
billigeren Ausweg“.

2. Wir betrachten nicht die Zeichenreihen als die syntaktischen Objek-
te, sondern die Ableitungsbäume, die wir oben angeben haben. Wir
benutzen also die abstrakte Syntax um die Semantik einer Program-
miersprache zu definieren. Da die Ableitungsbäume die Struktur des
syntaktischen Konstruktes liefern, haben wir damit das Problem der
Mehrdeutigkeit gelöst.

Allerdings haben wir damit das Problem auf eine andere Ebene ver-
schoben. Denn wir wollen später Ausdrücke und Anweisungen nicht
wirklich als Bäume darstellen, weil das viel zu aufwendig wäre. Außer-
dem ist eine textuelle Darstellung für uns viel schneller zu erfassen. Die
Struktur eines Ausdrucks werden wir dann jedoch durch Klammerung
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angeben. Für unser obiges Beispiel können wir beispielsweise schreiben:
a4 ≡ (x − 7) + 3 bzw. a′4 ≡ x − (7 + 3). Auf ähnliche Weise benutzen
wir in Anweisungen die Klammern2 p und y um die Struktur der An-
weisung explizit zu machen. Unser vorangegangenes Beispiel war wie
folgt gemeint:

z := 1 ;
y := 1 ;
while y ≤ x do
p z := y ∗ x ;

y := y + 1 y

Diese Klammern gehören nicht zu der Syntax unserer Programmier-
sprache, weil wir ja nur die abstrakte Syntax, d. h. die Ableitungsbäume
betrachten. Sie dienen uns nur dazu, diese Struktur in einer ansonsten
mehrdeutigen Zeichenreihe zu finden. Die Klammern sind konkrete
Syntax, um die Struktur eines Ausdruck oder Anweisung eindeutig zu
machen. Wir gehen im folgenden immer davon aus, daß eine textuel-
le Repräsentation einer Anweisung genug konkrete Syntax enthält, um
eindeutig auf die Struktur der Anweisung zu schließen.

Streng genommen ist in der Anweisung

z := 1 ;
y := 1 ;
while y ≤ x do
p z := y ∗ x ;

y := y + 1 y

immer noch nicht genügend konkrete Syntax enthalten, um eindeutig auf die
Struktur zu schließen. Aber das ist nicht ganz so schlimm. Warum?

1.3 Syntaktische Gleichheit

Wir nennen zwei Ausdrücke oder Anweisungen syntaktisch gleich, wenn sie
denselben Ableitungsbaum besitzen, d. h. wenn die abstrakte Syntax gleich
ist. Um die syntaktische Gleichheit auszudrücken, benutzen wir das Symbol
≡, das wir auch schon benutzt haben, um Ausdrücke und Anweisungen zu
benennen. Wenn also zwei Ausdrücke a0 und a1 gleich sind, schreiben wir

2Diese Klammern ersetzen das begin und end in herkömmlichen Programmiersprachen
oder die geschweiften Klammern in Java oder C.
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a0 ≡ a1. Entsprechend schreiben wir für zwei Anweisungen c0 ≡ c1, wenn sie
syntaktisch gleich sind.

Das Symbol ≡ gehört nicht zur Syntax der Sprache. Wir führen es als ”Meta-
Symbol“ ein, um über die Syntax der Sprache zu reden. Insbesondere ist a0 ≡
a1 kein boolescher Ausdruck!

Da wir die Gleichheit über die abstrakte Syntax formulieren, können textu-
ell verschiedene Anweisungen syntaktisch gleich sein. Beispielsweise können
sich die Anweisungen textuell durch einige Leerzeichen oder Zeilenumbrüche
unterscheiden. Sie können sich aber auch durch zusätzliche redundante Klam-
mern, also durch konkrete Syntax unterscheiden. Beispielsweise sind die Zei-
chenreihen x + y und (x + (y)) verschieden; die Ausdrücke sind dennoch
syntaktisch gleich, da sie denselben Ableitungsbaum besitzen und damit die
abstrakte Syntax gleich ist.
Eine weitere Möglichkeit für textuell verschiedene aber syntaktisch gleiche
Ausdrücke und Anweisungen ist die Darstellung von Konstanten, für die wir
ja keine konkrete Syntax definiert haben. Beispielsweise sind die Ausdrücke
007 und 7 syntaktisch gleich, da sie dieselbe Zahl aus Z bezeichnen. Entspre-
chend sind dann die Ausdrücke 007 + 693 und 7 + 693 syntaktisch gleich.
Allerdings sind die Ausdrücke 3 + 4 und 4 + 3 syntaktisch verschieden, da sie
verschiedene (geordnete) Ableitungsbäume besitzen. Wir werden zwar später
sehen, daß die beiden Ausdrücke semantisch gleich sind (wir nennen das
dann äquivalent), aber syntaktisch sind sie verschieden. Entsprechend sind
die beiden booleschen Ausdrücke x = y und y = x syntaktisch verschieden,
obwohl sie semantisch gleich sind. Dies werden wir im folgenden sorgfältig
auseinander halten.

Es kann passieren, daß dieselbe Zeichenreihe ”syntaktisch verschieden“ zu
sich selbst ist. Denn wir haben gesehen, daß x − 7 + 3 zwei Ableitungsbäume
besitzt. Allerdings betrachten wir solche Zeichenreihen im folgenden nicht
mehr, da wir davon ausgehen, daß die textuelle Repräsentation von Aus-
drücken und Anweisungen immer genügend konkrete Syntax enthält, um die
Ableitungsbäume eindeutig zu machen (vgl. Abschnitt 1.2).

2 Semantik der Ausdrücke

Bevor wir die operationale Semantik der Anweisungen definieren können,
müssen wir zunächst die Semantik der arithmetischen und booleschen Aus-
drücke definieren. Die operationale Semantik eines Ausdrucks definiert die
schrittweise Auswertung des Ausdrucks.
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2.1 Zustände

Beispielsweise wird der Ausdruck 3 + 5 zu 8 ausgewertet und der Ausdruck
007 + 693 zu 700. Diese Auswertungsrelation müssen wir nun ganz allgemein
für beliebige Ausdrücke definieren. So müssen wir auch den Ausdruck x + y
auswerten; allerdings müssen wir dazu die aktuellen Werte von x und y ken-
nen. Die aktuellen Werte der Variablen nennen wir Zustand. Im allgemeinen
können wir also einen Ausdruck nur dann auswerten, wenn wir den Zustand
kennen, bzw. die Auswertung eines Ausdrucks definieren wir für einen gege-
benen Zustand. Wir schreiben 〈a, σ〉 → n, wenn der Ausdruck a im Zustand
σ zu n ausgewertet wird.

Da wir in IMP nur Variablen vom Typ Z zugelassen haben, können wir einen
Zustand wie folgt als Abbildung definieren.

Definition 3.1 (Zustand, Wert einer Variablen)
Eine totale Abbildung σ : V → Z heißt Zustand. Die Menge aller Zustände
bezeichnen wir mit Σ (d. h. Σ = V → Z). Für eine Variable v ∈ V nennen
wir σ(v) den Wert von v im Zustand σ.

Im folgenden können wir nun die Auswertungrelation für arithmetische und
boolesche Ausdrücke in einem Zustand definieren.

2.2 Auswertungsrelation für arithmetische Ausdrücke

Die Auswertungsrelation definieren wir nun induktiv.

Definition 3.2 (Auswertungsrelation für Aexp)
Die Auswertungsrelation für arithmetische Ausdrücke ist eine dreistellige
Relation über Aexp, Σ und Z, wobei wir ein Element der Relation durch
〈a, σ〉 → n notieren.

Die Auswertungsrelation ist induktiv über den Aufbau der arithmetischen
Ausdrücke definiert:

• Für a ≡ n ∈ Z gilt: 〈n, σ〉 → n.

• Für a ≡ v ∈ V gilt: 〈v, σ〉 → σ(v).

• Für a ≡ a0 + a1 mit a0, a1 ∈ Aexp und 〈a0, σ〉 → n0 und 〈a1, σ〉 → n1

gilt: 〈a, σ〉 → n0 + n1.
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Achtung, in a0 + a1 ist das Zeichen + Syntax; in n0+n1 ist das Zeichen
+ Semantik, d. h. n0 +n1 steht für die Summer der beiden Zahlen n0 +
n1.
Entsprechendes gilt für die nachfolgenden Schritte.

• Für a ≡ a0−a1 mit a0, a1 ∈ Aexp und 〈a0, σ〉 → n0 und 〈a1, σ〉 → n1

gilt: 〈a, σ〉 → n0 − n1.

• Für a ≡ a0∗a1 mit a0, a1 ∈ Aexp und 〈a0, σ〉 → n0 und 〈a1, σ〉 → n1

gilt: 〈a, σ〉 → n0 · n1.

Diese Definition können wir auch durch Regeln notieren, wobei es für je-
den Punkt der induktiven Definition genau eine Regel gibt. Dabei sind die
Mengen, aus denen n, n0, n1, v, a0, a1 und σ gemäß unserer Konventionen
gewählt werden können eine implizite Nebenbedingung für diese Regeln:

〈n, σ〉 → n 〈v, σ〉 → σ(v)

〈a0, σ〉 → n0 〈a1, σ〉 → n1

〈a0+a1, σ〉 → n0 + n1

〈a0, σ〉 → n0 〈a1, σ〉 → n1

〈a0−a1, σ〉 → n0 − n1

〈a0, σ〉 → n0 〈a1, σ〉 → n1

〈a0∗a1, σ〉 → n0 · n1

Die Regeln lassen sich wie folgt lesen: Über dem Strich stehen bestimmte Aus-
sagen, die die Voraussetzung der Regel bilden; wenn diese Voraussetzungen
erfüllt sind, dann gilt auch die Aussage unter dem Strich, die Schlußfolge-
rung. Die ersten beiden Regeln haben keine Voraussetzung, d.h. daß ihre
Schlußfolgerung in jedem Falle gilt. Solche Regeln heißen auch Axiome; sie
entsprechen dem Induktionsanfang der induktiven Definition. Mit Hilfe der
Axiome und Regeln lassen sich dann schrittweise weitere Aussagen herleiten.
Da es für jedes Konstrukt der arithmetischen Ausdrücke genau eine Regel
gibt, kann man leicht zeigen, daß es für jeden arithmetischen Ausdruck a
und jeden Zustand σ genau eine Zahl n ∈ Z gibt, für die 〈a, σ〉 → n gilt,
d. h. jedem arithmetischen Ausdruck ist in jedem Zustand eindeutig ein Wert
zugeordnet.

Beispiel 3.3 (Auswertung eines arithmetischen Ausdrucks)
Die Auswertung des arithmetischen Ausdrucks (x − 2) ∗ y in einem Zustand
σ mit σ(x) = 2 und σ(y) = 9 können wir dann in Form eines Ableitungsbau-
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mes notieren:

〈x, σ〉 → 2 〈2, σ〉 → 2
〈x − 2, σ〉 → 0 〈y, σ〉 → 9

〈(x − 2) ∗ y, σ〉 → 0

Dabei wird zunächst der Baum von der Wurzel her von unten nach oben
aufgebaut, ohne die rechten Seiten zu kennen. Diese werden dann von den
Axiomen her von oben nach unten gemäß der Regeln eingefügt.

Allein für die Definition der Auswertung der arithmetischen Ausdrücke wäre
der hier betriebene Aufwand etwas übertrieben. Die induktive Definition für
die Auswertung hätte vollkommen gereicht. Nachfolgend werden wir aber die
Semantik der booleschen Ausdrücke und vor allem die Semantik der An-
weisungen ganz analog durch Regeln definieren. Deshalb benutzen wir der
Einheitlichkeit halber auch hier schon dieselbe Technik.

Mit Hilfe der Semantik für arithmetische Ausdrücke können wir nun definie-
ren, wann zwei arithmetische Ausdrücke

”
semantisch“ gleich sind: nämlich

dann, wenn beide Ausdrücke für jeden Zustand dasselbe Ergebnis liefern.

Definition 3.3 (Äquivalenz arithmetischer Ausdrücke)
Zwei arithmetische Ausdrücke a0 und a1 heißen äquivalent, wenn für jeden
Zustand σ und jede Zahl n ∈ Z die Aussage 〈a0, σ〉 → n genau dann gilt,
wenn auch 〈a1, σ〉 → n gilt. Wenn a0 und a1 äquivalent sind, dann schreiben
wir a0 ∼ a1.

Beispielsweise gilt x + y ∼ y + x. Dies läßt sich einfach anhand der Regeln
für die Auswertungsrelation zeigen: Wenn 〈x + y, σ〉 → n gilt, muß dies
mit der einzigen Regel für x + y hergeleitet worden sein. Dementsprechend
existieren ganze Zahlen n0 und n1 mit n = n0 + n1 und 〈x, σ〉 → n0 und
〈y, σ〉 → n1. Daraus läßt sich dann wieder mit der Regel für y + x die Aussage
〈y + x, σ〉 → n herleiten. Ganz analog kann man die umgekehrte Richtung
der

”
genau-dann-wenn“-Aussage beweisen.

2.3 Auswertungsrelation für boolesche Ausdrücke

Die Auswertungsrelation für boolesche Ausdrücke definieren wir analog zur
Definition der arithmetischen Ausdrücke. Wir geben die induktive Definition
direkt in Form von Regeln an:
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Definition 3.4 (Auswertungsrelation für Bexp)
In den folgenden Regel treten die Wahrheitswerte true und false als Syntax
und als Semantik auf. Wir unterscheiden diese Varianten durch die Darstel-
lung in verschiedenen Schriftarten. Aus dem Kontext wäre aber auch ohne
diese Unterscheidung immer klar, wo die syntaktische und wo die semanti-
sche Variante gemeint ist.

〈true, σ〉 → true 〈 false , σ〉 → false

〈a0, σ〉 → n 〈a1, σ〉 → n
〈a0=a1, σ〉 → true

〈a0, σ〉 → n0 〈a1, σ〉 → n1

〈a0=a1, σ〉 → false
n0 6= n1

〈a0, σ〉 → n0 〈a1, σ〉 → n1

〈a0≤a1, σ〉 → true
n0 ≤ n1

〈a0, σ〉 → n0 〈a1, σ〉 → n1

〈a0≤a1, σ〉 → false
n0 > n1

〈b, σ〉 → false
〈¬b, σ〉 → true

〈b, σ〉 → true
〈¬b, σ〉 → false

〈b0, σ〉 → false 〈b1, σ〉 → t
〈b0∧b1, σ〉 → false

〈b0, σ〉 → t 〈b1, σ〉 → false
〈b0∧b1, σ〉 → false

〈b0, σ〉 → true 〈b1, σ〉 → true
〈b0∧b1, σ〉 → true

〈b0, σ〉 → true 〈b1, σ〉 → t
〈b0∨b1, σ〉 → true

〈b0, σ〉 → t 〈b1, σ〉 → true
〈b0∨b1, σ〉 → true

〈b0, σ〉 → false 〈b1, σ〉 → false
〈b0∨b1, σ〉 → false

In unserer Definition erzwingen wir durch die Regeln beim UND- bzw. ODER-
Operator immer die Auswertung beider Argumente. In vielen Programmier-
sprachen werden stattdessen diese Operatoren sequentiell definiert; d. h. wenn
durch die Auswertung des ersten Argumentes das Ergebnis des booleschen
Ausdrucks schon klar ist, wird das zweite Argument nicht mehr ausgewertet.
Da die Auswertung von Ausdrücken bei uns zunächst immer definiert ist und
auch keine Seiteneffekte haben kann, macht das im Ergebnis keinen Unter-
schied. Bei späteren Erweiterungen – die es erlauben werden, daß die Aus-
wertung eines Ausdrucks kein Ergebnis liefert oder zu Seiteneffekten führt
– macht dies aber einen Unterschied. Das werden wir uns in einer Übung
genauer ansehen. Ebenso können wir einen parallelen UND- oder ODER-
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Operator definieren, der das Ergebnis des Ausdrucks ausgibt, sobald es aus
dem Ergebnis eines der beiden Argumente folgt.

Im Gegensatz zu den Regeln für die arithmetischen Ausdrücke, gibt es für
die Auswertung der booleschen Ausdrücke in manchen Fällen mehrere Re-
geln die man bei der Auswertung anwenden kann. Ein Beispiel dafür ist ein
boolescher Ausdruck b0∧b1 bei dem sowohl b0 als auch b1 zu false ausgewer-
tet werden. Denn dann sind zwei Regel anwendbar. Glücklicherweise führt
die Anwendung beider Regeln zu demselben Ergebnis. Wir werden in einer
Übung beweisen, daß die Auswertung der booleschen Ausdrücke gemäß der
obigen Definition tatsächlich immer eindeutig ist.

Analog zur Definition der Äquivalenz von arithmetischen Ausdrücken, de-
finieren wir nun die Äquivalenz der booleschen Ausdrücke. Zwei boolesche
Ausdrücke sind äquivalent, wenn sie in jedem Zustand gleich ausgewertet
werden:

Definition 3.5 (Äquivalenz boolescher Ausdrücke)
Zwei boolesche Ausdrücke b0 und b1 heißen äquivalent, wenn für jeden Zu-
stand σ und jeden Wahrheitswert t ∈ B die Aussage 〈b0, σ〉 → t genau dann
gilt, wenn auch 〈b1, σ〉 → t gilt. Wenn b0 und b1 äquivalent sind, dann schrei-
ben wir b0 ∼ b1.

Beispielsweise können wir die Regel von De Morgan als Äquivalenz formu-
lieren: Für alle booleschen Ausdrücke b0 und b1 gilt b0 ∨ b1 ∼ ¬(¬b0 ∧ ¬b1).
Diese kann man mit Hilfe der Regeln zur Definition der Auswertungsrelation
nachweisen.

3 Semantik der Anweisungen

Nachdem wir nun Ausdrücke auswerten können, werden wir als nächstes die
Semantik von Anweisungen der Programmiersprache IMP angeben. Dabei
definieren wir eine dreistellige Relation über Com, Σ und Σ. Ein Element
dieser Relation geben wir in der folgenden Notation an:

〈c, σ〉 → σ′

Dabei bedeutet 〈c, σ〉 → σ′, daß die Anweisung c im Zustand σ′ terminiert,
wenn man sie im Zustand σ startet. Für die Zuweisung x:= 5 gilt beispiels-
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weise 〈x:= 5, σ〉 → σ′, wobei der Zustand σ′ wie folgt definiert ist:

σ′(v) =

{
5 für v ≡ x
σ(v) für v 6≡ x

Der Zustand σ′ entsteht dabei aus dem Zustand σ durch Modifikation der
Abbildung an (ausschließlich) der Stelle x. Da wir solche Modifikationen bei
der Definition der Semantik immer wieder benötigen, führen wir dafür eine
eigene Notation ein: Wir schreiben σ′ = σ[5/x].

Definition 3.6 (Modifikation eines Zustandes)
Für einen Zustand σ ∈ Σ, eine ganze Zahl n ∈ Z und eine Variable u ∈ V
bezeichnet σ[n/u] einen Zustand (d. h. σ[n/v] ∈ Σ), der wie folgt definiert
ist:

σ[n/u](v) =

{
n für v ≡ u
σ(v) für v 6≡ u

Für einen Zustand σ, ganze Zahlen n1, n2, . . . , nk ∈ Z und Variablen u1, u2, . . . , uk ∈
V bezeichnet σ[n1/u1, n2/u1, . . . nk/uk] den Zustand σ[n1/u1][n2/u1] . . . [nk/uk].

Mit Hilfe dieser Notation können wir nun die Semantik für Anweisungen
definieren:

Definition 3.7 (Semantik von Anweisungen)
Die Semantik für Anweisungen ist durch die folgenden Regeln definiert:

〈skip, σ〉 → σ
〈a, σ〉 → n

〈v:=a, σ〉 → σ[n/v]
〈c0, σ〉 → σ′′ 〈c1, σ

′′〉 → σ′

〈c0 ;c1, σ〉 → σ′

〈b, σ〉 → true 〈c0, σ〉 → σ′

〈 if b then c0 else c1, σ〉 → σ′
〈b, σ〉 → false 〈c1, σ〉 → σ′

〈 if b then c0 else c1, σ〉 → σ′

〈b, σ〉 → false
〈while b do c, σ〉 → σ

〈b, σ〉 → true 〈c, σ〉 → σ′′ 〈while b do c, σ′′〉 → σ′

〈while b do c, σ〉 → σ′

In der letzten Regel tritt die Anweisung while b do c in ihrer eigenen Voraus-
setzung wieder auf. Allerdings wird sie dort im allgemeinen in einem ande-
ren Zustand betrachtet. Deshalb terminiert irgendwann der Aufbau des Ab-
leitungsbaumes für die Semantik, wenn die Schleife terminiert. Wenn die
Schleife nicht terminiert, können wir allerdings kein 〈while b do c, σ〉 → σ′

herleiten. Aber dies bedeutet ja gerade, daß die Schleife nicht terminiert.
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Wie wir eben gesehen haben, muß es nicht für jede Anweisung c und jeden
Zustand σ einen Zustand σ′ mit 〈c, σ〉 → σ′ geben (im Gegensatz zu der
Auswertung von Ausdrücken). Wenn ein solches σ′ nicht existiert, bedeutet
dies gerade, daß die Anweisung c nicht terminiert, wenn sie im Zustand σ
gestartet wird. Allerdings gibt es für jede Anweisung c und jeden Zustand
σ′ immer höchstens ein σ′ mit 〈c, σ〉 → σ′. Dies bedeutet gerade, daß die
Semantik der Programmiersprache IMP deterministisch ist.
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Beispiel 3.5 (Endlosschleife)
Ein weiteres Beispiel ist die folgende Schleife: w ≡while true do skip. Wenn
wir für einen Zustand σ einen Tripel 〈w, σ〉 → σ′ ableiten wollen, stellen wir
fest, daß die Regel für die Schleife wieder dieselbe Voraussetzung hat:

〈true, σ〉 → true 〈skip, σ〉 → σ

...
〈w, σ〉 →?

〈w, σ〉 →?

Wir geraten also beim Suchen nach einer Ableitung in eine Endlosschleife
und man sieht leicht, daß es für kein σ′ eine Herleitung für 〈w, σ〉 → σ′

geben kann. Dies ist auch nicht weiter verwunderlich, da dies ja gerade dem
Verhalten einer Endloschleife entspricht.

Wir werden später (siehe Beispiel 4.5 in Kapitel 4 auf Seite 55) eine Technik
kennenlernen, mit der man auch beweisen kann, daß für kein σ und σ′ ein
Tripel 〈w, σ〉 → σ′ herleitbar ist.

Ganz analog zu Ausdrücken können wir nun auch definieren, wann zwei An-
weisungen äquivalent sind, nämlich genau dann, wenn beide für jeden An-
fangszustand im selben Zustand terminieren (oder beide nicht terminieren).

Definition 3.8 (Äquivalenz von Anweisungen)
Zwei Anweisungen c0 und c1 heißen äquivalent, wenn für alle Zustände σ und
σ′ die Aussage 〈c0, σ〉 → σ′ genau dann gilt, wenn auch 〈c1, σ〉 → σ′ gilt.
Wenn c0 und c1 äquivalent sind, dann schreiben wir c0 ∼ c1.

Mit Hilfe der Definition der Semantik von IMP können wir dann auch be-
weisen, daß bestimmte Anweisungen äquivalent sind. Dazu betrachten wir
wieder ein Beispiel.

Beispiel 3.6
Sei w ≡ while b do c wobei b ein beliebiger boolescher Ausdruck und c eine
beliebige Anweisung ist. Dann gilt w ∼ if b then c ; w else skip
Um dies zu beweisen, müssen wir zeigen, daß für alle Zustände σ und σ′ gilt:

〈w, σ〉 → σ′ gdw 〈 if b then c ; w else skip, σ〉 → σ′

Wir betrachten die beiden Richtungen dieser Genau-Dann-Wenn-Aussage
einzeln:
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”
⇒“: Gelte also 〈w, σ〉 → σ′. Dann gibt es eine Herleitung für 〈w, σ〉 → σ′.

Wir zeigen nun, daß es dann auch eine Herleitung für

〈 if b then c ; w else skip, σ〉 → σ′

gibt. Gemäß der Regeln für die Semantik der Schleife hat die Herleitung
dann eine der beiden folgenden Formen:

(1)

...
〈b, σ〉 → false
〈w, σ〉 → σ

oder

(2)

...
〈b, σ〉 → true

...
〈c, σ〉 → σ′′

...
〈w, σ′′〉 → σ′

〈w, σ〉 → σ′

Wir betrachten nun diese beiden Fälle einzeln:

Fall (1): In diesem Falle gilt σ = σ′ und es gibt eine Herleitung für
〈b, σ〉 → false. Daraus können wir nun die folgende Herleitung
konstruieren:

...
〈b, σ〉 → false 〈skip, σ〉 → σ

〈 if b then c ; w else skip, σ〉 → σ

Mit σ′ = σ gilt die Behauptung.

Fall (2): In diesem Falle gibt es Herleitungen für 〈b, σ〉 → true, 〈c, σ〉 →
σ′′ und 〈w, σ′′〉 → σ′. Aus diesen Herleitungen können wir die fol-
gende Herleitung konstruieren:

...
〈b, σ〉 → true

...
〈c, σ〉 → σ′′

...
〈w, σ′′〉 → σ′

〈c ; w, σ〉 → σ′

〈 if b then c ; w else skip, σ〉 → σ′

Und damit gilt die Behauptung.
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”
⇐“: Sei nun also 〈 if b then c ; w else skip, σ〉 → σ′ herleitbar. Diese Her-

leitung kann gemäß der Regeln für die Bedingung, die Anweisung skip
und die Sequenz die beiden folgenden Formen haben:

(1)

...
〈b, σ〉 → false 〈skip, σ〉 → σ

〈 if b then c ; w else skip, σ〉 → σ

d. h. σ′ = σ und

(2)

...
〈b, σ〉 → true

...
〈c, σ〉 → σ′′

...
〈w, σ′′〉 → σ′

〈c ; w, σ〉 → σ′

〈 if b then c ; w else skip, σ〉 → σ′

Aus diesen Herleitungen müssen wir nun jeweils eine Herleitung für
〈w, σ〉 → σ′ konstruieren:

Fall (1): In diesem Falle können wir daraus die folgende Herleitung
konstruieren:

...
〈b, σ〉 → false
〈w, σ〉 → σ

Wegen σ′ = σ ist diese eine Herelitung für 〈w, σ〉 → σ′.

Fall (2): In diesem Falle können wir daraus die folgende Herleitung
konstruieren:

...
〈b, σ〉 → true

...
〈c, σ〉 → σ′′

...
〈w, σ′′〉 → σ′

〈w, σ〉 → σ′

Dies ist die Herleitung für 〈w, σ〉 → σ′.

Insgesamt haben wir gezeigt, daß wir eine Herleitung für 〈w, σ〉 → σ′ im-
mer in eine Herleitung für 〈 if b then c ; w else skip, σ〉 → σ′

”
umbauen“

können und umgekehrt. Damit ist also die Äquivalenz beider Anweisungen
bewiesen.
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4 Alternative Definitionen

In den vorangegangenen Abschnitten haben wir eine Semantik für die Pro-
grammiersprache IMP angegeben. Natürlich kann man dieselbe Semantik auf
viele verschiedene Weisen definieren. Beispielsweise haben wir in unsere De-
finition keine Reihenfolge für die Auswertung der Operanden in einem arith-
metischen oder booleschen Ausdruck festgelegt. Da die Programmiersprache
IMP keine Seiteneffekte zuläßt, ist die Auswertungreihenfolge für das Ergeb-
nis auch irrelevant. Wir werden aber in der Übung einige Erweiterungen von
IMP betrachten, die Seiteneffekte haben. Dann macht es einen Unterschied,
in welcher Reihenfolge die Operanden ausgewertet werden.

Ein Beispiel für einen arithmetischen Ausdruck mit einem Seiteneffekt ist
das Konstrukt x++, das aus der Programmiersprache C oder Java bekannt
ist. Neben der Auswertung der Variablen wird der Wert der Variablen auch
verändert.

In diesem Abschnitt zeigen wir anhand einiger Ausschnitte eine alternative
Definition der Semantik der Programmiersprache IMP. In dieser Semantik
wird der Charakter des schrittweisen Auswertens von Ausdrücken und des
schrittweisen Abarbeitens von Anweisungen noch deutlicher:

Achtung: Die nachfolgenden Regeln sind nicht vollständig. Sie sollen nur
die Idee der Semantikdefinition vermitteln. Wir werden diese Semantik in
der Übung vervollständigen. Damit wir die neue Definition von der vorange-
gangenen unterscheiden können, geben wir ihr den Index 2.

Regeln für die Auswertung von Ausdrücken

〈n + m, σ〉 →2 〈k, σ〉 k = n + m

〈a0, σ〉 →2 〈a′0, σ′〉
〈a0 + a1, σ〉 →2 〈a′0 + a1, σ

′〉
〈a1, σ〉 →2 〈a′1, σ′〉

〈n + a1, σ〉 →2 〈n + a′1, σ
′〉

...

Im Gegensatz zur vorangegangenen Definition geben wir für einen Ausdruck
nicht nur das Ergebnis der Auswertung an, sondern auch den resultierenden
Zustand. Bei den obigen Regeln bleibt dieser Zustand immer gleich. Aber
das Schema ermöglicht es uns, später bei der Auswertung von Ausdrücken
auch den Zustand zu verändern.
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Regeln für die Ausführung von Anweisungen

〈a, σ〉 →2 〈a′, σ′〉
〈v:= a, σ〉 →2 〈v:= a′, σ[n/v]〉 〈v:= n, σ〉 →2 〈skip, σ[n/v]〉

〈b, σ〉 →2 〈b′, σ′〉
〈 if b then c0 else c1, σ〉 →2 〈 if b′ then c0 else c1, σ

′〉

〈 if true then c0 else c1, σ〉 →2 〈c0, σ〉

〈 if false then c0 else c1, σ〉 →2 〈c1, σ〉
...

In dieser Semantik werden bei der Ausführung der Anweisungen, die Aus-
drücke schrittweise vereinfacht und auch die Anweisungen selbst werden ver-
einfacht. Solche Semantiken werden auch Textersetzungssemantiken genannt.

5 Zusammenfassung

In diesem Kapitel haben wir gezeigt, wie man für imperative Programmier-
sprachen mit Hilfe von Regeln eine Semantik angeben kann. Für jedes Kon-
strukt (jeden Operator) der Programmiersprache gibt es Regeln, die die Se-
mantik dieses Konstruktes beschreiben. Die Semantik jedes Konstruktes kann
dabei unabhängig von der Semantik der anderen Konstrukte beschrieben wer-
den. Deshalb kann man relativ einfach neue Konstrukte zu einer Program-
miersprache hinzufügen und die Semantik einfach erweitern. Diese Prinzip
ist recht vielseitig und läßt sich auf die unterschiedlichsten Programmier-
sprachen anwenden. Sehr verbreitet ist dies Art der Semantikdefinition im
Bereich der Prozeßalgebren, wie z. B. CCS zur Beschreibung der Interaktion
verschiedener Prozesse [9]. Dieses Prinzip wurde von Gordon Plotkin ein-
geführt und Strukturelle Operationale Semantik (engl. structural operational
semantics) (SOS) genannt [10].
Tatsächlich ist die Definition einer Strukturellen Operationalen Semantik ei-
ne induktive Definition. Die Beweise die wir damit führen sind Induktionsbe-
weise. Deshalb – und weil Induktion in der Informatik fast überall vorkommt
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– werden wir uns im nächsten Kapitel das Prinzip der induktiven Definition
und des induktiven Beweisens etwas genauer ansehen. Dabei werden wir ins-
besondere die Beweistechniken, die wir hier benutzt haben auf eine formale
Grundlage stellen.
Zum Beweis der Äquivalenz von Ausdrücken und Anweisungen haben wir die-
se Techniken schon angewendet. Dabei haben wir insbesondere ausgenutzt,
daß die Regeln die Struktur einer Herleitung festlegen und aus der Herlei-
tung für eine Aussage ein andere konstruiert. Diese Beweise sind meist nicht
schwierig, aber aufwendig. Deshalb werden wir für den Nachweis der Kor-
rektheit der Programme später andere Techniken kennen lernen, die nicht
unmittelbar auf der Definition der Semantik arbeiten.
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Kapitel 4

Induktive Definitionen und
Beweise

Bei der Definition der Semantik der Programmiersprache IMP haben wir an
vielen verschiedenen Stellen induktive Definitionen benutzt: angefangen bei
der Syntax von IMP, über die Semantik der Ausdrücke bis hin zur Seman-
tik der Anweisungen. Teilweise waren die Definitionen explizit induktiv, wie
beispielsweise bei der Definition der Semantik für arithmetische Ausdrücke.
Teilweise waren die Definitionen

”
versteckt“ induktiv. Beispielsweise verbirgt

sich hinter der Definition der Syntax durch eine Grammatik auch eine induk-
tive Definition; ebenso verbirgt sich hinter der Definition der Semantik durch
Regeln eine induktive Definition.

Wenn man genau hinsieht, gibt es in der Informatik fast nichts, was nicht
induktiv definiert wäre. Davon werden wir uns im weiteren Verlauf der Vor-
lesung noch überzeugen können. Deshalb spielen induktive Definitionen und
Beweise in der Informatik eine ganz zentrale Rolle – ob man sie nun explizit
macht oder nicht.

Aus diesem Grunde beschäftigen wir uns in diesem Kapitel ausführlich mit
diesem Thema. Wir beginnen damit, daß wir das Prinzip der vollständigen
Induktion zur Noetherschen Induktion verallgemeinern. Danach werden wir
das Prinzip der induktiven Definition mit Hilfe von Regeln und der durch
sie definierten Menge präzisieren. Dann werden wir zeigen, wie man Eigen-
schaften von induktiv definierten Mengen beweisen kann: die Regelinduktion.
Am Ende beschäftigen wir uns dann mit der Herleitung und der Definition
induktiv über die Struktur einer Menge.

43
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1 Noethersche Induktion

Ein grundlegendes und sehr einfaches Beweisprinzip, das teilweise schon
im Schulunterricht in der Oberstufe vermittelt wird, ist das Prinzip der
vollständigen Induktion. Dabei beweist man, daß eine Aussage für alle natürli-
chen Zahlen gilt, indem man die Aussage für i = 0 beweist und darüber
hinaus zeigt, daß die Aussage für i + 1 gilt, falls sie für i gilt. Man

”
hangelt“

sich mit diesem Prinzip ausgehend von der Aussage für 0 zu jeder natürlichen
Zahl durch. Die Aussage gilt damit für jede natürliche Zahl.
Dieses Prinzip können wir wie folgt formulieren, wobei wir die Aussage durch
ein Prädikat P ⊆ N formalisieren. Wir sagen, daß das Prädikat bzw. die
Aussage für eine Zahl n gilt, wenn n ∈ P gilt; wir schreiben dafür auch
P (n).

Prinzip 4.1 (Vollständige Induktion)
Sei P ⊆ N ein Prädikat über den natürlichen Zahlen. Wenn

Induktionsanfang: P (0) gilt und

Induktionsschritt: für jedes i ∈ N mit P (i) auch P (i + 1) gilt,

dann gilt P (n) für jedes n ∈ N (d. h. P = N).

Im Induktionsschritt nennt man die Voraussetzung P (i) auch die Indukti-
onsvoraussetzung.

Man kann das Prinzip der vollständigen Induktion auch knapp wie folgt for-
mulieren:

(P (0) ∧ ∀i ∈ N.(P (i) ⇒ P (i + 1))) ⇒ ∀n ∈ N.P (n)

Tatsächlich ist das Induktionsprinzip ein Axiom zur Formalisierung der natürli-
chen Zahlen. Deshalb beweisen wir das Induktionsprinzip auch nicht. Aller-
dings beschäftigen wir uns hier nicht mit der Axiomatisierung der natürlichen
Zahlen. Wir wenden das Prinzip ”nur“ an – zum Beweisen von Aussagen.

Um zu sehen, wie man das Induktionsprinzip zum Beweisen einer Aussage
einsetzen kann, betrachten wir ein einfaches Beispiel.

In der Vorlesung wird das Prinzip der vollständigen Induktion nur kurz wie-
derholt. Der folgende Beweis wird gar nicht besprochen. Er sollte aber ohne
Probleme mit den Kenntnissen des Grundstudiums verständlich sein.
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Beispiel 4.1
Aus der Schule wissen wir, daß sich die Summe aller Zahlen von 1 bis zu

einer Zahl n geschlossen durch den Ausdruck n·(n+1)
2

darstellen läßt, d. h. für
jede natürliche Zahl n ∈ N gilt:

n∑
i=1

i =
n · (n + 1)

2

Wir beweisen diese Aussage nun mit Hilfe der vollständigen Induktion. Dabei
ist das Prädikat P wie folgt definiert:

P (n) ≡
n∑

i=1

i =
n · (n + 1)

2

Wir beweisen nun durch vollständige Induktion, daß P (n) für jedes n ∈ N
gilt:

Induktionsanfang: Wir müssen P (n) für n = 0, d. h.
∑0

i=1 i = 0·(0+1)
2

,

zeigen. Offensichtlich gilt
∑0

i=1 i = 0 = 0·(0+1)
2

.

Induktionsvoraussetzung: Wir gehen nun davon aus, daß für ein n ∈ N
die Aussage P (n) gilt, d. h.

∑n
i=1 i = n·(n+1)

2
.

Induktionsschritt: Wir zeigen nun, daß dann auch die Aussage P (n + 1)

gilt, d. h.
∑n+1

i=1 i = n+1·((n+1)+1)
2

:∑n+1
i=1 i = (

∑n
i=1 i) + (n + 1) Aufteilung der Summe

= n·(n+1)
2

+ (n + 1) Induktionsvoraussetzung
= n·(n+1)+2·(n+1)

2
Rechenregeln

= (n+1)·(n+2)
2

Rechenregeln
= (n+1)·((n+1)+1)

2
Rechenregeln

Gemäß des Prinzips der vollständigen Induktion gilt damit P (n) für jedes

n ∈ N. Die Aussage
∑n

i=1 i = n·(n+1)
2

ist damit für jedes n ∈ N bewiesen.

Diese Aussage kann man auch ohne (explizite Benutzung der vollständigen
Induktion) beweisen:

1 + 2 + . . . + (n− 1) + n
n + (n− 1) + . . . + 2 + 1

(n + 1) + (n + 1) + . . . + (n + 1) + (n + 1)

Die doppelte Summe aller Zahlen von 1 bis n ist also n · (n + 1). Allerdings
verbirgt sich hinter den Pünktchen . . . doch wieder eine heimliche Induktion.
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Das Beweisprinzip der Induktion ist nicht auf die Struktur der natürlichen
Zahlen beschränkt. Die einzige Voraussetzung ist, daß die zugrundeliegende
Struktur einen oder mehrere

”
Anfänge“ besitzt und daß jedes Element aus-

gehend von diesen
”
Anfängen“ irgendwann erreicht wird. Solche Strukturen

sind gerade die wohlgegründeten Ordnungen (siehe Kapitel 2 Abschnitt2).
Das Prinzip der Noetherschen Induktion sagt, daß eine Aussage für alle Ele-
mente einer wohlgegründeten Ordnung gilt, wenn man für jedes Element
zeigen kann, daß die Aussage für das Element selbst gilt, wenn sie für alle
Vorgänger des Elementes gilt.

Prinzip 4.2 (Noethersche Induktion)
Sei (X,≺) eine wohlgegründete (irreflexive) Ordnung und P ⊆ X ein Prädi-
kat über X. Wenn für jedes x ∈ X, für das für jedes y ∈ Y mit y ≺ x die
Aussage P (y) gilt, auch P (x) gilt, dann gilt für jedes z ∈ X die Aussage
P (z) (d. h. P = X).

Wir können analog zum Prinzip der vollständigen Induktion das Prinzip der
Noetherschen Induktion wie folgt formulieren:

(∀x ∈ X.((∀y ≺ x.P (y)) ⇒ P (x))) ⇒ ∀z ∈ X.P (z)

Die Bedingung ∀y ≺ x.P (y) ist dann gerade die Induktionsvoraussetzung für
P (x) in der Noetherschen Induktion.

Die Noethersche Induktion hat ihren Namen von der Mathematikerin Emmy
Noether erhalten.

Oft wird das Prinzip der Noetherschen Induktion noch allgemeiner für wohl-
gegründete Relationen formuliert (eine Relation ist wohlgegründet, wenn sie
keine unendlich absteigende Ketten besitzt).

Die Prinzipien der Noetherschen Induktion und der vollständigen Induktion
sind sich strukturell sehr ähnlich. Im Induktionsschritt zeigt man für jedes
Element, daß die Aussage für dieses Element gilt, wenn sie für alle seine
Vorgänger gilt. Was man bei der Noetherschen Induktion auf den ersten
Blick vermißt, ist der Induktionsanfang. Haben wir den Induktionsanfang
vergessen?
Die Antwort ist, daß der Induktionsanfang im Induktionsschritt enthalten
ist. Das sieht man, wenn wir ein minimales Element x ∈ X der Ordnung
betrachten1. Per Annahme besitzt x keine Vorgänger. Dementsprechend ist

1Zur Erinnerung: In der ersten Übung haben wir gezeigt, daß jede nicht-leere Teilmenge
von X einer wohlgegründeten Ordnung ein minimales Element enthält. Deshalb besitzt X
ein minimales Element, wenn X wenigstens ein Element enthält.
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die Induktionsvoraussetzung ∀y ≺ x.P (y) für jedes minimales Element eine
triviale Aussage (eine über die leere Menge). Für ein minimales Element x
ist dementsprechend die Bedingung der Noetherschen Induktion äquivalent
zu P (x). Wir müssen also für die minimalen Elemente x die Aussage P (x)
ohne weitere Voraussetzungen beweisen. Das entspricht gerade dem Indukti-
onsanfang.

Beispiel 4.2 (Euklid)
In Beispiel 3.1 hatten wir bereits den Algorithmus von Euklid zum Berechnen
des größten gemeinsamen Teilers zweier Zahlen in unsere Programmierspra-
che IMP formuliert:

while ¬( x = y ) do
p i f x ≤ y then y := y − x

else x := x − y y

Der Einfachheit halber bezeichnen wir dieses Programm mit E für Euklid.
Wir werden nun mit Hilfe der Noetherschen Induktion beweisen, daß dieses
Programm für jeden Zustand σ mit σ(x) ≥ 1 und σ(y) ≥ 1 terminiert, d. h.
daß ein Zustand σ′ mit 〈E, σ〉 → σ′ existiert.
Zunächst definieren wir die irreflexive Ordnung, über die wir die Induktion
ausführen. Wir definieren X = {σ ∈ Σ | σ(x) ≥ 1 ∧ σ(y) ≥ 1}. Die Ordnung
≺ auf X definieren wie folgt: σ′ ≺ σ gdw. σ′(x) ≤ σ(x) und σ′(y) ≤ σ(y) und
σ′(x) 6= σ(x) oder σ′(y) 6= σ(y). Die Ordnung (X,≺) ist dann wohlgegründet.
Zunächst formalisieren wir das Prädikat, das wir dann mit Hilfe der Noether-
schen Induktion beweisen werden:

P (σ) = ∃σ′ ∈ Σ.〈E, σ〉 → σ′

Sei nun σ ∈ Σ beliebig:

Induktionsannahme: Wir nehmen an, daß für jedes σ′′ ≺ σ ein σ′′′ mit
〈E, σ′′〉 → σ′′′ existiert.

Induktionsschritt: Wir beweisen nun, daß dann auch für σ ein σ′ mit
〈E, σ〉 → σ′ existiert:

Dazu unterscheiden wir zwei Fälle:

1. Fall σ(x) = σ(y): In diesem Falle gilt 〈¬(x = y), σ〉 → false. Mit
der 1. Regel für die Schleife ist damit 〈E, σ〉 → σ herleitbar. Damit
gilt die zu beweisende Aussage (mit σ′ = σ).
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2. Fall σ(x) 6= σ(y): In diesem Falle gilt 〈¬(x = y), σ〉 → true. Außer-
dem ist mit den Regeln für die Bedingte Anweisung und für die
Zuweisung

〈 if (x ≤y) then y:= y−x else x:= x−y, σ〉 → σ′′

mit

σ′′ =

{
σ[σ(y)− σ(x)/y] für σ(y) > σ(x)
σ[σ(x)− σ(y)/x] für σ(x) > σ(y)

herleitbar. Insbesondere gilt σ′′ ∈ X und σ′′ ≺ σ. Wegen In-
duktionsvoraussetzung gilt also P (σ′′). Es gibt also ein σ′′′ mit
〈E, σ′′〉 → σ′′′. Mit der Regel für die Schleife können wir damit
〈E, σ〉 → σ′′′ herleiten. Damit gilt die zu beweisende Aussage (mit
σ′ = σ′′′).

Damit haben wir per Noetherscher Induktion die Aussage P (σ) für jedes
σ ∈ X bewiesen.

In diesem Beispiel hätten wir den Beweis mit Hilfe der Vollständigen Induk-
tion führen können. Mit Hilfe der Noetherschen Induktion wird der Beweis
aber oft viel einfacher.

2 Induktive Definitionen

Wir haben im Kapitel 3 induktive Definitionen in verschiedenen Formen be-
nutzt: Grammatiken (bzw. die BNF), Regeln und die explizite Form. Hinter
allen diesen Definitionen steckt dasselbe Prinzip:

• Für bestimmte Elemente wird gesagt, daß sie unbedingt zu der defi-
nierten Menge gehören.

• Für andere Elemente wird gesagt, daß sie unter der Voraussetzung zu
der definierten Menge gehören, daß andere Elemente Menge bereits zu
der Menge gehören.

Der erste Fall entspricht gerade den Axiomen, der zweite Fall entspricht ge-
rade den Regeln (mit mind. einer Voraussetzung).
Um den Begriff der induktiven Definition formal zu fassen, definieren wir dazu
zunächst den Begriff der Regel bzw. der Regelinstanz. Dabei gehen wir immer
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davon aus, daß die Regeln auf einer vorgegebenen Menge von
”
potentiellen

Objekten“ operieren und die Regeln dann eine Teilmenge davon definieren.
In der Praxis wird diese Menge von

”
potentiellen Objekten“ oft nicht explizit

erwähnt. Für die Formalisierung des Begriffes müssen wir diese Menge X, auf
der die Regeln arbeiten, explizit machen.

Definition 4.3 (Regel und Axiom)
Sei X eine Menge. Für eine endliche Teilmenge Y ⊆ X und ein Element
x ∈ X nennen wir das Paar (Y, x) eine Regelinstanz über X. Die Elemente
der Menge Y nennen wir die Voraussetzungen der Regel, das Element x
nennen wir die Folgerung der Regel.

Manchmal reden wir auch von der linken und rechten Seite einer Regel.

Eine Regelinstanz (∅, x) nennen wir Axiominstanz.

Im folgenden werden wir meist nur von Regeln und Axiomen reden, wenn wir
Regelinstanzen und Axiominstanzen meinen. Der Grund für die Unterschei-
dung zwischen dem Begriff der Regel und der Regelinstanz ist, daß wir bei
der syntaktischen Formulierung einer Regel meist unendlich viele Regelin-
stanzen bezeichnen. Beispielsweise steht die eine Regel bzw. das eine Axiom
über Aexp× Σ× Z aus Abschnitt 2.2

〈n, σ〉 → n

für unendlich viele Regelinstanzen: Für jedes n ∈ Z und jeden Zustand σ ∈ Σ
ist (∅, (n, σ, n)) eine Instanz dieser Regel. Um zwischen der syntaktischen Re-
präsentation einer Regel und ihren meist unendlich vielen Instanzen unter-
scheiden zu können, haben wir in der obigen Definition über Regelinstanzen
geredet. Da wir uns aber über die syntaktische Repräsentation von Regeln
keine weitere Gedanken machen, werden wir im folgenden nur noch von Re-
geln reden, wenn wir eigentlich Regelinstanzen meinen.
Wenn wir nun eine Menge von Regeln (die natürlich auch Axiome enthalten
kann) angeben, ist nun die Frage, welche Menge durch diese Regeln definiert
wird. Ganz klar sollte die definierte Menge die Regeln respektieren, d. h.
wenn alle Voraussetzungen in der Menge liegen, dann auch ihre Folgerung.
Eine Menge, die diese Eigenschaft besitzt, nennen wir abgeschlossen unter
der Regelmenge, oder kurz R-abgeschlossen, wobei R die Menge der Regeln
bezeichnet:
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Definition 4.4 (Unter einer Regelmenge abgeschlossene Menge)
Sei R eine Menge von Regeln über X. Eine Menge Q ⊆ X heißt abgeschlossen
unter R (kurz R-abgeschlossen), wenn für jede Regel(instanz) (Y, x) ∈ R mit
Y ⊆ Q auch x ∈ Q gilt.

Offensichtlich enthält jede R-abgeschlossene Menge all die Elemente, die auf
der rechten Seite eines Axioms auftreten. Denn für die linke Seite ∅ eines
Axioms gilt immer ∅ ⊆ Q und damit muß die rechte Seite x in Q liegen. Die
Frage ist nun, ob für eine gegebene Regelmenge R über X überhaupt eine
R-abgeschlossene Menge existiert. Falls sie existiert, müssen wir uns über-
legen, ob sie eindeutig ist. Die erste Frage ist einfach zu beantworten, denn
die Menge X ist trivialerweise immer R-abgeschlossen. Und das beantwortet
auch schon fast die zweite Frage: im allgemeinen gibt es mehrere verschiedene
R-abgeschlossene Mengen.

Beispiel 4.3 (Abgeschlossene Mengen)
Wir betrachten die Menge X = {a, b} und die Regeln R = {({a}, b), ({b}, a)}.
Dann sind die beiden Mengen ∅ und X abgeschlossen unter R. Die leere
Menge ist für diese Regeln R auch R-abgeschlossen, da in ihr kein Axiom
vorkommt. Es muß also kein Element unbedingt in die Menge aufgenommen
werden.
Dagegen sind die beiden Mengen {a} und {b} nicht R-abgeschlossen, da die
Regeln verlangen, daß das jeweils andere Element auch in die Menge gehört.

Man kann sich leicht Beispiele für Regelmengen überlegen, für die noch sehr
viel mehr abgeschlossene Mengen existieren. Die Frage ist nun, welche der R-
abgeschlossenen Mengen die durch die Regelmenge induktiv definierte Menge
sein soll. Die Idee ist, daß wir nur das in die induktiv definierte Menge auf-
nehmen sollten, was unbedingt nötig ist – und nicht mehr. Wir sollten also
die kleinste R-abgeschlossene Menge wählen. Zuvor müssen wir uns jedoch
davon überzeugen, daß es diese kleinste R-abgeschlossene Menge überhaupt
gibt.

Lemma 4.5 (Existenz der kleinsten R-abgeschlossenen Menge)
Sei R eine Menge von Regeln über X.

1. Sei nun (Qi)i∈I eine Familie von R-abgeschlossenen Mengen, d. h. für
jedes i ∈ I ist Qi abgeschlossen unter R. Dann ist auch die Menge
Q =

⋂
i∈I Qi unter R abgeschlossen.

2. Es gibt eine bzgl. Mengeninklusion ⊆ kleinste R-abgeschlossene Menge.
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Beweis: Der Beweis von 1. ist einfach. Der Beweis von 2. benutzt 1.

Den Beweis werden wir in der Übung besprechen.

�

Zur Erinnerung: Das kleinste Element einer Menge ist, wenn es existiert,
eindeutig.

Da wir nun wissen, daß es für jede Regelmenge eine kleinste R-abgeschlossene
Menge gibt, können wir diese als die induktiv durch R definierte Menge fest-
legen.

Definition 4.6 (Induktiv definierte Menge)
Sei R eine Regelmenge über X. Wir nennen die (bzgl. ⊆) kleinste unter R
abgeschlossene Menge die durch R induktiv definierte Menge. Wir bezeichnen
diese Menge mit IR.

Oft liest man bei induktiven Definitionen den Zusatz ”nichts sonst ist in der
Menge“. Das ist gemäß der obigen Definition – und dem in der Mathematik
üblichen Verständnis von induktiven Definitionen – überflüssig (oder sogar
unsinnig). Denn wenn man eine Menge induktive definiert, dann ist die klein-
ste R-abgeschlossene Menge gemeint; und die enthält keine ”überflüssigen“
Elemente.

Beispiel 4.4 (Induktive Definitionen)
1. In Kapitel 3 haben wir bereits einige Beispiele für induktive Defini-

tionen kennen gelernt. Allerdings haben wir dort die Menge X nicht
explizit benannt und die Regeln mehr oder weniger explizit angegeben.

Zur Übung können Sie sich ja mal überlegen, wie die Menge X und die
zugehörigen Regelinstanzen aussehen.

2. Sei A eine beliebige Menge und → eine binäre Relation über A. Wir
definieren nun die folgende Regelmenge über A× A:

R = {(∅, (a, a)) | a ∈ A}∪
{(∅, (a, b)) | a → b}∪
{({(a, b), (b, c)}, (a, c)) | a, b, c ∈ A}

Dann bezeichnet die durch diese Regeln induktiv definierte Menge ge-
rade die reflexiv-transitive Hülle von →, d. h. IR =→∗.
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Die Regelinstanzen der ersten Zeile drücken die Reflexivität aus. Die
Regelinstanzen der zweiten Zeile drücken aus, daß jeder Übergang von
→ auch zu IR gehört. Die Regelinstanzen der dritten Zeile drücken die
Transitivität aus.

Da IR die kleinste R-abgeschlossene Menge ist, werden zu IR gerade die
für die reflexiv-transitive Hülle nötigen Übergänge hinzugenommen.

Die Definition 4.6 definiert uns zwar eindeutig die Menge IR. Sie liefert uns
aber kein Verfahren, um an die Elemente dieser Menge heranzukommen.
Wir werden nun eine weitere Charakterisierung von IR angeben, die es uns
erlaubt, die Elemente von IR systematisch zu generieren. Die Idee ist recht
einfach: Wir beginnen mit der leeren Menge und nehmen schrittweise die Ele-
mente dazu, die man mit Hilfe der Regeln aus den bisher abgeleiteten Elemen-
te ableiten kann. Im ersten Schritt sind das nur die Folgerungen der Axiome,
da die ja keine Voraussetzungen benötigen. Im zweiten Schritt können wir
dann schon mehr ableiten. Natürlich kann es sein, daß dieser Iterationsprozeß
nie endet. Aber im Laufe des Interationsprozesses kommen nach und nach
alle Elemente von IR dazu.

Für eine Regelmenge R über X sieht diese Iteration wie folgt aus:

Q0 = ∅
Q1 = {x ∈ X | (∅, x) ∈ R} = R̂(Q0)

Q2 = {x ∈ X | (Y, x) ∈ R, Y ⊆ Q1} = R̂(Q1)

Q3 = {x ∈ X | (Y, x) ∈ R, Y ⊆ Q2} = R̂(Q2)
...

Die Menge IR ergibt sich dann als Vereinigung aller Qi, d. h. IR =
⋃

i∈N Qi.

Dabei definiert die Operation R̂ genau einen Ableitungsschritt: R̂(Q) ist die-
jenige Menge von Elementen, die man in einem Schritt aus Q ableiten kann.

Definition 4.7 (Ableitungsschritt R̂)
Sei R eine Menge von Regeln über X. Die Abbildung R̂ : 2X → 2X ist wie
folgt definiert:

R̂(Q) = {x ∈ X | ∃Y ⊆ Q.(Y, x) ∈ R}

Die Elemente von R̂(Q) heißen die in einem Schritt mit R aus Q ableitbaren
Elemente.
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Mit Hilfe des R̂-Operators können wir jetzt noch einfacher formulieren, wann
eine Menge Q unter R abgeschlossen ist, nämlich genau dann, wenn R̂(Q) ⊆
Q gilt.

Wir können nun unsere obigen Überlegungen als Satz formulieren:

Satz 4.8
Sei R eine Regelmenge über X und sei die Folge von Teilmengen Q0, Q1, Q2, . . .
wie folgt definiert:

• Q0 = ∅

• Qi+1 = R̂(Qi) für i ∈ N

Dann gilt IR =
⋃

i∈N Qi und IR ist ein Fixpunkt von R̂, d. h. R̂(IR) = IR.

Beweis: Ausführlich werden wir diesen Satz in den Übungen beweisen. Hier
sind die wesentlichen Schritte des Beweises:

1. Der Operator R̂ ist monoton (steigend), d. h. für alle Mengen Q und

Q′ mit Q ⊆ Q′ gilt R̂(Q) ⊆ R̂(Q′).

2. Die Folge Q0, Q1, Q2, . . . bildet eine aufsteigende Kette bezüglich ⊆,
d. h. für jedes i ∈ N gilt Qi ⊆ Qi+1.

3. Die Menge Q =
⋃

i∈N Qi ist R̂-abgeschlossen.

4. Für jedes Qi und jede R-abgeschlossene Menge Q′ gilt Qi ⊆ Q′.

5. Q ist die kleinste unter R abgeschlossene Menge.

6. IR ist Fixpunkt von R̂.

�

Aus der Definition von IR wissen wir, daß IR bezüglich Mengeninklusion
kleiner ist als jede R-abgeschlossene Menge Q (d. h. als jede Menge mit
R̂(Q) ⊆ Q. Insbesondere ist IR kleiner als jeder Fixpunkt Q von R̂ (d. h.
als jede Menge Q mit R̂(Q) = Q). Das heißt, daß IR der (bezüglich Men-
geninklusion) kleinste Fixpunkt von R̂ ist. Wir haben damit also ganz neben-
bei gezeigt, daß R̂ immer einen kleinsten Fixpunkt besitzt.
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Tatsächlich ist der obige Satz bereits der Fixpunktsatz von Kleene (oder eine
speziellen Ausprägung davon). Wir werden diesen Satz später beweisen. Der
Beweis des Fixpunktsatzes von Kleene folgt exakt dem gleichen Muster.

Auch wenn der Beweis des Satzes insgesamt recht elementar ist, ist der Satz
nicht ganz trivial. Denn wenn wir Regelinstanzen mit unendlich vielen Vor-
aussetzungen zulassen würden, dann würde der Satz in dieser Form nicht
gelten. Wer findet ein Gegenbeispiel?

3 Regelinduktion

Im vorangegangen Abschnitt haben wir gesehen, wie man Mengen induktiv
definieren kann. Die Frage ist nun, wie man Eigenschaften der Elemente ei-
ner induktiv definierten Menge beweisen kann. Dies geht ganz analog zur
Vollständigen Induktion. Wir müssen die Eigenschaft für jedes Element be-
weisen, das aufgrund eines Axioms in die Menge aufgenommen wird. Außer-
dem müssen wir beweisen, daß für jede Regel die Eigenschaft für die Fol-
gerung (d. h. die rechte Seite der Regel) gilt, wenn die Eigenschaft für alle
Voraussetzungen (d. h. alle Elemente auf der linken Seite der Regel) gilt. Die-
ses Prinzip wird Induktion über die Regeln oder kurz Regelinduktion genannt.

Wie bei der Noetherschen Induktion können wir den Induktionsanfang im
Induktionsschritt

”
verstecken“, da die Axiome spezielle Regeln ohne Voraus-

setzung sind.

Prinzip 4.9 (Regelinduktion)
Sei R eine Menge von Regeln über X und P ein Prädikat über X. Wenn für
jede Regel (Y, x) ∈ R, für die für jedes y ∈ Y das Prädikat P (y) gilt, auch
das Prädikat P (x) gilt, dann gilt das Prädikat P (z) für jedes z ∈ IR, d. h.
für jedes Element der durch R induktiv definieren Menge.

Wir können das Prinzip der Regelinduktion auch kurz wie folgt formulieren:

(∀(Y, x) ∈ R.((∀y ∈ Y.P (y)) ⇒ P (x))) ⇒ ∀z ∈ IR.P (z)

Eine weitere Formulierung ist die folgende:

(∀(Y, x) ∈ R.(Y ⊆ P ⇒ x ∈ P )) ⇒ IR ⊆ P

Beweis: Das Prinzip der Regelinduktion können wir mit Hilfe von Satz 4.8
auf das Prinzip der vollständigen Induktion zurückführen: Sei also R eine
Regelmenge, für die für jede Regel (Y, x) ∈ R mit Y ⊆ P auch x ∈ P gilt.
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1. Aus der Definition des R̂-Operators folgt unmittelbar, daß dann für
jede Teilmenge Q ⊆ P auch gilt R̂(Q) ⊆ P .

2. Gemäß Satz 4.8 läßt sich die Menge IR wie folgt durch die Folge von
Mengen Q0, Q1, . . . mit

• Q0 = ∅
• Qi+1 = R̂(Qi) für i ∈ N

charakterisieren: IR =
⋃

i∈N Qi.

3. Offensichtlich gilt Q0 = ∅ ⊆ P . Durch vollständige Induktion können
wir nun unter Anwendung von 1. zeigen, daß für jedes i ∈ N gilt Qi ⊆ P .
Da jedes einzelne Qi in P enthalten ist gilt dann auch (

⋃
i∈N Qi) ⊆ P ;

also gilt IR ⊆ P .

�

Das Prinzip der Regelinduktion können wir nun anwenden, um Eigenschaften
der Elemente einer induktiv definierten Menge zu beweisen. Indirekt zeigen
wir auf diese Weise auch, daß bestimmte Elemente nicht in der induktiv de-
finierten Menge vorkommen: nämlich genau die Elemente, die die bewiesene
Eigenschaft nicht besitzen. Dazu betrachten wir ein Beispiel.

Beispiel 4.5
Im Beispiel 3.5 in Kapitel 3 auf Seite 36 haben wir bereits informell argu-
mentiert, daß es für die Anweisung w ≡ while true do skip keine Zustände
σ, σ′ ∈ Σ gibt, für die sich 〈w, σ〉 → σ′ ableiten läßt. Wir werden dies nun
mit Hilfe der Regelinduktion beweisen. Dazu müssen wir uns zunächst ein
Prädikat überlegen, das wir mit Hilfe der Regelinduktion beweisen können:

P (〈c, σ〉 → σ′) = c 6≡ w

d. h. wir zeigen, daß für jeden Tripel 〈c, σ〉 → σ′, den wir aus den Regeln
herleiten können, die Anweisung c definitiv nicht unsere Endlosschleife w ist.
Wir beweisen die Gültigkeit des Prädikats nun für alle gemäß der Regeln
herleitbare Tripel 〈c, σ〉 → σ′ durch Induktion über die Regeln:

〈skip, σ〉 → σ
Offensichtlich gilt skip 6≡ w.
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〈a, σ〉 → n
〈v:=a, σ〉 → σ[n/v]

Offensichtlich gilt v:= a 6≡ w.

...
für alle Regeln bis auf die Regeln für die Schleife gilt die Aussage analog.
Wir müssen also nur noch die Regeln für die Schleife w betrachten.

〈true, σ〉 → false
〈while true do skip c, σ〉 → σ

Für diese Regel ist die Voraussetzung 〈true, σ〉 → false verletzt. Es ist
also nichts zu zeigen.

〈b, σ〉 → true 〈skip, σ〉 → σ′′ 〈while true do skip, σ′′〉 → σ′

〈while true do skip, σ〉 → σ′

Da für die Voraussetzung 〈while true do skip, σ′′〉 → σ′ das Prädikat
nicht erfüllt ist, müssen wir für diese Regel nichts zeigen.

Hier stellen wir das informelle Argument, daß die Konstruktion ei-
ner Herleitung für 〈while true do skip, σ′′〉 → σ′ niemals terminieren
würde, vom Kopf auf die Füsse: Wir beweisen den Induktionsschritt für
diese Regel, indem wir die Ungültigkeit der Induktionsvoraussetzung für
diese Regel zeigen. Das ist sicher etwas ungewöhnlich, aber es ist kor-
rekt.

4 Herleitungen

Bei der Definition des Begriffs der induktiv durch eine Regelmenge definier-
ten Menge haben wir zur Motivation informell den Begriff der Ableitbar-
keit und den Begriff derHerleitung benutzt. Insbesondere ist die alternative
Charakterisierung der induktiven Mengen in Satz 4.8 durch die schrittweise
Ableitbarkeit der Element motiviert.
Jetzt sind wir dazu in der Lage, diesen Begriff formal zu definieren – und
zwar durch eine induktive Definition. Wir ziehen uns also fast an den ei-
genen Haaren aus dem Sumpf. Da wir den Begriff der Herleitung bei der
formalen Definition der induktiv definierten Menge nicht benutzt haben, ist
unser Vorgehen aber formal sauber.
Formal ist eine Herleitung ein Baum, an dessen Wurzel das hergeleitete Ele-
ment steht. Die Verzweigungen im Baum entsprechen dabei den Regeln. Um
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eine aufwendige graphische Notation zu vermeiden, definieren wir eine Her-
leitung technisch als ein Paar ({d1, . . . , dn}, x), wobei d1, . . . , dn Teilherlei-
tungen sind und x das hergeleitete Element. Um den Aspekt der Regelan-
wendung besser zum Ausdruck zu bringen benutzen wir anstelle des Kommas
den Schrägstrich: ({d1, . . . dn}/x). Wenn d eine Herleitung2 für x ist, schrei-
ben wir d `R x (gesprochen

”
d leitet x her“). Dabei lassen wir den Index R

meist weg, wenn R aus dem Kontext hervor geht.

Definition 4.10 (Herleitung)
Sei R eine Regelmenge über X. Wir definieren die Relation `R induktiv durch
die folgenden Regeln R′:

• Für jedes Axiom (∅, x) ∈ R ist

(∅/x) `R x

eine Regel aus R′.

• Für jede Regel ({x1, . . . , xn}, x) ∈ R ist

d1 `R x1 . . . dn `R xn

({d1, . . . , dn}/x) `R x

eine Regel aus R′.

Wenn d `R x in der durch R′ induktiv definierten Menge liegt, sagen wir,
daß d eine Herleitung für x ist.

Durch diese Regeln werden die Herleitungsbäume in Form von
”
Klammerge-

birgen“ codiert. Für die Definition der Herleitung ist dies praktisch. Wenn
wir aber über Herleitungen reden wollen, ist dies eher unpraktisch. Dann
benutzen wir die Notation wie wir sie in Kapitel 3 in Abschnitt 3 benutzt
haben (z. B. in Beispiel 3.4).
Wenn unsere Definition der induktiven Mengen und der Herleitung vernünf-
tig sind, sollte nun gelten, daß die Elemente der durch die Regeln induktiv
definierten Menge genau die Elemente sind, für die eine Herleitung existiert.
Formal formulieren wir das wie folgt:

2Im Englischen heißt Herleitung derivation. Deshalb bezeichnen wir Herleitungen im
folgenden mit dem Zeichen d.
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Lemma 4.11 (Induktive definierte Menge und Herleitung)
Sei R eine Regelmenge. Dann gilt x ∈ IR genau dann, wenn ein d mit d `R x
existiert.

Beweis: Regelinduktion. Ein genauer Beweis wird in der Übung besprochen.

Fragen: Über welche Regeln geht die Regelinduktion? Wie genau ist das Prädi-
kat formuliert, für das wir die Regelinduktion anwenden?

�

Wenn es eine Herleitung d für ein Element x gibt, schreiben wir auch `R x,
bzw. wenn R aus dem Kontext hervorgeht auch ` x. Die Aussagen x ∈ IR

und `R x sind dann gleichbedeutend. In der Literatur wird meist `R x bzw.
` x verwendet.
Das vorangegangene Lemma besagt nur, daß es für jedes Element einer in-
duktiv definierten Menge mind. eine Herleitung gibt. Es kann jedoch sein,
daß es für manche Elemente mehrere verschiedenen Herleitungen gibt. In der
Praxis versucht man aber meist, induktive Definitionen so zu formulieren,
daß es eine eindeutige Herleitung für jedes Element gibt. Um das zu formali-
sieren, formulieren wir nun den Begriff der eindeutigen induktiven Definition.

Definition 4.12 (Eindeutige induktive Definition)
Die durch eine Regelmenge R induktive definierte Menge heißt eindeutig
induktiv definiert, wenn für jedes x ∈ IR genau eine Herleitung d mit d `R x
existiert.

Zur Übung sollte Sie sich einmal überlegen, welche der Regelmengen aus
Kapitel 3 eindeutige induktive Definitionen sind und welche nicht. Besonders
interessant sind die Regeln für das Auswerten der booleschen Ausdrücke.

Oft werden induktive Definitionen nur dann induktiv genannt, wenn sie ein-
deutig sind. Insbesondere bei der Definition von syntaktischen Mengen legt
man Wert auf die Eindeutigkeit der Definition (vgl. Diskussion zur abstrak-
ten Syntax in Kapitel 3 in Abschnitt 1.2). Um den Begriff der eindeutigen
induktiven Definition zu bilden, ist es aber zweckmäßig zunächst den Begriff
der induktiven Definition zu bilden, und dann die eindeutigen als Spezialfall
zu charakterisieren.
Wenn eine induktive Definition eindeutig ist, kann man (totale) Abbildungen
von IR in irgendeine Menge Y induktiv über den Aufbau der Menge IR defi-
nieren. Dazu betrachten wir einige Beispiele von Abbildungen, die wir später
noch mehrfach benutzen werden.
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Beispiel 4.6 (Definitionen induktiv über den Aufbau einer Menge)
1. Für die Menge der arithmetischen Ausdrücke Aexp definieren wir die

Länge induktiv über den Aufbau: length : Aexp → N ist definiert durch:

• length(n) = 1

• length(v) = 1

• length(a0 + a1) = length(a0) + length(a0) + 1

• length(a0 − a1) = length(a0) + length(a0) + 1

• length(a0 ∗ a1) = length(a0) + length(a0) + 1

Formal könnte man die Abbildung durch die folgenden Regeln definieren:

(n, 1) (v, 1)

(a0, n0) (a1, n1)
(a0+a1, n0 + n1 + 1)

(a0, n0) (a1, n1)
(a0−a1, n0 + n1 + 1)

(a0, n0) (a1, n1)
(a0∗a1, n0 + n1 + 1)

Die dadurch definierte Relation length ⊆ Aexp × N ist eine totale Ab-
bildung, da die Definition der arithmetischen eindeutig ist (dies müßte
man aber eigentlich beweisen).

2. Die Abbildung assign : Com → 2V, die jeder Anweisung die Menge
derjenigen Variablen zuordnet, an die ein Wert zugewiesen wird, ist
induktiv definiert durch:

• assign(skip) = ∅
• assign(v:= a) = {v}
• assign(c0 ; c1) = assign(c0) ∪ assign(c1)

• assign( if b then c0 else c1) = assign(c0) ∪ assign(c1)

• assign(while b do c) = assign(c)

Wir verzichten hier darauf, das Prinzip der Definition einer totalen Abbil-
dung induktiv über den Aufbau der Menge zu formalisieren. Das erste Beispiel
sollte einen guten Eindruck davon geben, wie das geht. Die Formalisierung
und der Beweis, daß die so definierte Relation für jede eindeutig induktiv
definierte Menge eine totale Abbildung ist, ist eine einfache Übungsaufgabe.
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Weitere Beispiele für Definitionen induktiv über den Aufbau ist die Aus-
wertung der arithmetischen Ausdrücke und der booleschen Ausdrücke. Die
Semantik der Anweisungen dagegen ist keine Definition induktiv über den
Aufbau! Warum wohl?

5 Zusammenfassung

In diesem Kapitel haben wir die Konzepte der induktiven Definition und
des induktiven Beweisens formalisiert, die wir in Kapitel 3 benutzt haben,
um die operationale Semantik der Programmiersprache IMP zu definieren.
Methodisch hätten wir diese Definitionen vor der Definition der operationalen
Semantik einführen müssen.
Aus didaktischen Gründen haben wir die Konzepte erst nach Ihrer Anwen-
dung eingeführt. Generell stellt sich die Frage, ob wir (im Rahmen der Vorle-
sung Semantik) diese Konzepte formalisieren sollten, oder ob wir diese Kon-
zepte als gemeinsame Pragmatik voraussetzen. Der Hauptgrund, diese Kon-
zepte hier zu formalisieren, ist, daß auf dieser Ebene später deutlich wird, daß
die mathematische und die operationale Ebene weit weniger unterschiedlich
sind, als man zunächst erwarten würde. Ein weiterer Grund ist, ein Bewußt-
sein dafür zu schaffen, daß in der Informatik fast überall nur mit Wasser
gekocht wird, wobei das Wasser die Konzepte des induktiven Definierens
und Beweisens sind.



Kapitel 5

Mathematische Semantik

In diesem Kapitel werden wir nun eine weitere Technik zur Definition der
Semantik einer Programmiersprache vorstellen: die mathematische bzw. de-
notationale Semantik. Außerdem werden wir Techniken kennenlernen, um die
Äquivalenz verschiedener Semantiken zu beweisen.

1 Motivation

Bevor wir die mathematische Semantik für die Programmiersprache IMP
definieren, betrachten wir zur Motivation nochmal kurz die operationale Se-
mantik von IMP. Durch die Tripel

〈a, σ〉 → n

〈b, σ〉 → t

〈c, σ〉 → σ′

wird einem Ausdruck in einem gegebenen Zustand σ ein Wert zugeordnet.
Einer Anweisung c wird für einen gegebenen Zustand σ der Endzustand σ′

zugeordnet, in dem die Anweisung terminiert, falls sie terminiert.
Eigentlich haben wir damit nicht den Ausdrücken bzw. den Anweisungen eine
Semantik zugeordnet, sondern jeweils nur einem Ausdruck bzw. einer Anwei-
sung zusammen mit einem Zustand σ. Bisher haben wir also Abbildungen
der folgenden Struktur

(Aexp× Σ) → Z

61
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(Bexp× Σ) → B

(Com× Σ) ⇀ Σ

definiert. Was wir eigentlich wollen sind Abbildungen der folgenden Struktur:

A : Aexp → (Σ → Z)

B : Bexp → (Σ → B)

C : Com → (Σ ⇀ Σ)

Dabei soll A jedem arithmetischen Ausdruck seine Semantik zuordnen: eine
Abbildung Σ → Z, die für jeden Zustand den Wert zurückliefert, zu dem
der Ausdruck in diesem Zustand ausgewertet wird. Entsprechendes gilt für
B und die booleschen Ausdrücke. Die Abbildung C ordnet jeder Anweisung
c eine partielle Abbildung (Σ ⇀ Σ) zu, die den Zusammenhang zwischen
dem Anfangszustand und dem Endzustand bei Ausführung der Anweisung
herstellt.
Natürlich ist es kein Problem, die Abbildungen A, B und C mit Hilfe der
operationalen Semantik punktweise zu definieren1. Beispielsweise können wir
die Abbildung C punktweise wie folgt definieren:

C(c)(σ) = σ′ falls 〈c, σ〉 → σ′

Da die Schreibweise C(c)(σ) etwas gewöhnungsbedürftig ist, und um zu be-
tonen, das C(c) die Semantik von c bezeichnet, benutzen wir bei der Anwen-
dung der Abbildung C auf eine Anweisung c die

”
Semantikklammern“, d. h.

wir schreiben CJcK anstelle von C(c). Dabei ist CJcK eine partielle Abbildung
Σ ⇀ Σ.
Auf diese Weise könnten wir also die mathematische Semantik der Ausdrücke
und Anweisungen mit Hilfe der operationalen Semantik unmittelbar formu-
lieren. Allerdings geht es bei der Definition der mathematischen Semantik
nicht nur darum, die Semantik, d. h. die Abbildungen A, B und C zu defi-
nieren! Es geht auch darum, wie diese Abbildungen definiert werden. Man
möchte nämlich, daß die Semantik eines syntaktischen Konstruktes nur mit
Hilfe der Semantik der Teilkonstrukte definiert wird. Beispielsweise können

1Die Umwandlung einer Abbildung der Form (Aexp × Σ) → Z in die Form Aexp →
(Σ → Z) bezeichnet man nach dem amerikanischen Logiker Haskell Curry auch Currysie-
rung bzw. engl. currying.
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wir die Semantik der sequentiellen Ausführung c0 ; c1 allein mit Hilfe der
Semantik der Teilkonstrukte c0 und c1 definieren:

CJc0 ; c1K = CJc1K ◦ CJc0K

Dabei ist ◦ die Funktionskomposition. Letztendlich wollen wir also die Se-
mantik der Anweisungen induktiv über den Aufbau der Anweisungen defi-
nieren; wenn man bei der Definition einer Semantik eines Konstrukts nur auf
die Semantik seiner Teilkonstrukte Bezug nehmen muß, nennt man das eine
kompositionale Semantik.
Das Problem bei der operationalen Semantik ist, daß sie nicht induktiv über
den Aufbau der Anweisungen definiert ist, da in der zweiten Regel für die
Schleife in der Voraussetzung die Schleife selbst wieder vorkommt. Die Frage
ist also, wie sich CJwhile b do cK allein mit Hilfe von BJbK und CJcK definie-
ren läßt. Und damit beschäftigen wir uns im Rest diese Kapitels (insbes. in
Abschnitt 3).

2 Semantik für Ausdrücke

Die Definition der Semantik der arithmetischen und booleschen Ausdrücke
ist nicht weiter schwierig, da bereits die operationale Semantik kompositional
ist. Der Vollständigkeit halber geben wir diese Definitionen hier trotzdem an
und nutzen die Gelegenheit, uns an einige Notationen zur Definition von
Abbildungen zu gewöhnen.

Definition 5.1 (Mathematische Semantik für arithmetische Ausdrücke)
Wir definieren die Abbildung A : Aexp → (Σ → Z) induktiv über den
Aufbau der arithmetischen Ausdrücke:

• AJnK = λσ ∈ Σ.n

• AJvK = λσ ∈ Σ.σ(v)

• AJa0+a1K = λσ ∈ Σ.(AJa0K(σ) +AJa1K(σ))

• AJa0−a1K = λσ ∈ Σ.(AJa0K(σ)−AJa1K(σ))

• AJa0∗a1K = λσ ∈ Σ.(AJa0K(σ) · AJa1K(σ))

Für einen arithmetischen Ausdruck a nennen wir AJaK die (mathematische)
Semantik von a.
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In der vorangegangenen Definition haben wir die ”Lambda“-Notation benutzt,
um die Abbildungen AJaK kompakt zu definieren. Wir hätten diese Abbil-
dungen auch wie folgt durch unsere Relationsschreibweise definieren können.
Allerdings hätten wir dann – streng genommen – beweisen müssen, daß die
derartig definierten Relationen totale Abbildungen sind.

• AJnK = {(σ, n) | σ ∈ Σ}

• AJvK = {(σ, σ(v)) | σ ∈ Σ}

• AJa0+a1K = {(σ, n0 + n1) | σ ∈ Σ, (σ, n0) ∈ AJa0K, (σ, n1) ∈ AJa1K}

• AJa0−a1K = {(σ, n0 − n1) | σ ∈ Σ, (σ, n0) ∈ AJa0K, (σ, n1) ∈ AJa1K}

• AJa0∗a1K = {(σ, n0 · n1) | σ ∈ Σ, (σ, n0) ∈ AJa0K, (σ, n1) ∈ AJa1K}

Die Semantik für den Ausdruck 3 + (5 ∗ x) ergibt sich dann beispielsweise
wie folgt:

• AJ3K = λσ ∈ Σ.3

• AJ5K = λσ ∈ Σ.5

• AJxK = λσ ∈ Σ.σ(x)

• AJ5 ∗ xK = λσ ∈ Σ.((λσ ∈ Σ.5)(σ) · (λσ ∈ Σ.σ(x))(σ))
Diesen λ-Ausdruck können wir vereinfachen zu:
λσ ∈ Σ.5 · σ(x)

• AJ3 +(5 ∗ x)K = λσ ∈ Σ.((λσ ∈ Σ.3)(σ) + (λσ ∈ Σ.(5 · σ(x)))(σ))
Diesen Ausdruck können wir vereinfachen zu:
λσ ∈ Σ.3 + (5 · σ(x))

Also gilt AJ3 + (5 ∗ x)K = λσ ∈ Σ.(3 + (5 · σ(x))). Auf einen konkreten
Zustand σ mit beispielsweise σ(x) = 7 können wir dann die Abbildung
AJ3 + (5 ∗ x)K wie folgt anwenden: AJ3 + (5 ∗ x)K(σ) = (λσ ∈ Σ.(3 + (5 ·
σ(x))))(σ) = 3 + (5 · σ(x)) = 3 + (5 · 7) = 38.
Entsprechend können wir nun die mathematische Semantik für boolesche
Ausdrücke definieren, wobei wir davon ausgehen, daß die Relationen und
Operationen =, ≤, ¬, ∧ und ∨ semantisch bereits definiert sind:

Definition 5.2 (Mathematische Semantik für boolesche Ausdrücke)
Wir definieren die Abbildung B : Bexp → B induktiv über den Aufbau der
booleschen Ausdrücke:
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• BJtrueK = λσ ∈ Σ.true

• BJ false K = λσ ∈ Σ.false

• BJa0=a1K = λσ ∈ Σ.(AJa0K(σ) = AJa1K(σ))

Wir könnten diese Abbildung auch wie folgt mit Hilfe der Relationen-
schreibeweise definieren:
{(σ, true) | σ ∈ Σ ∧ AJa0K(σ) = AJa1K(σ)}∪
{(σ, false) | σ ∈ Σ ∧ AJa0K(σ) 6= AJa1K(σ)}

• BJa0≤a1K = λσ ∈ Σ.(AJa0K(σ) ≤ AJa1K(σ))

• BJ¬ bK = λσ ∈ Σ.(¬BJbK(σ))

• BJb0∧b1K = λσ ∈ Σ.(BJb0K(σ) ∧ BJb1K(σ))

• BJb0∨b1K = λσ ∈ Σ.(BJb0K(σ) ∨ BJb1K(σ))

Für einen booleschen Ausdruck b nennen wir BJbK die (mathematische) Se-
mantik von b.

Wir haben nun zwei verschiedene Semantiken für Ausdrücke definiert: die
operationale Semantik und die mathematische Semantik. Natürlich sollten
diese Semantiken im Ergebnis übereinstimmen. Da beide ganz analog defi-
niert sind, kann man das auch recht einfach beweisen.

Lemma 5.3 (Äquivalenz der Semantiken für Ausdrücke)
1. Für jeden arithmetischen Ausdruck a, jeden Zustand σ und jede Zahl

n gilt

〈a, σ〉 → n gdw. AJaK(σ) = n

2. Für jeden booleschen Ausdruck b, jeden Zustand σ und jeden Wahr-
heitswert t gilt

〈b, σ〉 → t gdw. BJbK(σ) = t

Beweis: Induktion über den induktiven Aufbau der Ausdrücke. Im Detail
ist der Beweis lang aber langweilig. �
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3 Semantik für Anweisungen

In diesem Abschnitt definieren wir die mathematische Semantik für Anwei-
sungen. Bevor wir die Semantik formal definieren, sollten wir uns zunächst
erst einmal klar machen, worin das Problem besteht. Dazu beginnen wir mit
einer naiven Definition der Semantik – und fallen am Ende auf die Nase. Für
jede Anweisung c definieren wir dazu induktiv über den Aufbau die partielle
Abbildung CJcK : Σ ⇀ Σ, wobei CJcK(σ) = σ′ bedeutet, daß die Anweisung c
im Zustand σ′ terminiert, wenn sie im Zustand σ gestartet wird:

• CJskipK = idΣ = λσ ∈ Σ.σ

• CJv:= aK = λσ ∈ Σ.σ[AJaK(σ)/v]

• CJc0 ; c1K = CJc1K ◦ CJc0K

Zur Erinnerung die Funktionskomposition f ◦ g ist bei uns definiert
durch (f ◦ g)(x) = f(g(x)).

• CJ if b then c0 else c1K = λσ ∈ Σ.

{
CJc0K(σ) falls BJbK(σ) = true
CJc1K(σ) falls BJbK(σ) = false

Wir könnten auch schreiben CJif b then c0 else c1K = {(σ, σ′) ∈ Σ ×
Σ | BJbK(σ) = true ∧ (σ, σ′) ∈ CJc0K} ∪ {(σ, σ′) ∈ Σ × Σ | BJbK(σ) =
false ∧ (σ, σ′) ∈ CJc1K} Beide Definitionen bedeuten dasselbe. Welche
Notation wir wählen ist eine Frage der Gewöhnung und eine Frage der
Adäquatheit. In der ersten Variante sieht man jedoch sofort, daß es sich
um die Definition einer partiellen Abbildung handelt.

• Aus der Definition der operationalen Semantik wissen wir bereits, daß
gilt: while b do c ∼ if b then pc ; while b do c y else skip. Diese
Äquivalenz können wir nun zur Definition der Semantik der Anwei-
sung while b do c ausnutzen. Wir definieren:
CJwhile b do cK = CJ if b then pc ; while b doc y else skipK =

λσ ∈ Σ.

{
σ falls BJbK(σ) = false
CJwhile b do cK(CJcK(σ)) falls BJbK(σ) = true

Soweit der naive Versuch, die mathematische Semantik C für Anweisungen zu
definieren. Leider hat diese Definition einen massiven Fehler; denn in der De-
finition von CJwhile b do cK taucht bereits CJwhile b do cK auf. Deshalb ist
der obige

”
Versuch einer Definition“ keine mathematische Definition. Denn
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in einer mathematischen Definition darf der zu definierende Begriff nicht be-
nutzt, werden um den Begriff zu bilden. Eine solche Definition (auch wenn
man sie manchmal sieht) ist falsch; noch schlimmer: sie ist nicht einmal eine
Definition. Im Rest dieses Abschnitts werden wir uns nun darum bemühen,
wie wir diese Selbstbezüglichkeit in der Definition von CJwhile b do cK los
werden.

Eine ähnliche Selbstbezüglichkeit haben wir bereits bei der Definition der
operationalen Semantik für die Schleife gesehen. Denn in der Regel für die
Schleife tritt dieselbe Anweisung in der Voraussetzung auf. Allerdings konn-
ten wir solchen Regeln trotzdem die durch sie definierte induktiv definierte
Semantik zuordnen. Daß das wirklich gut geht, haben wir uns in Kapitel 4
überlegt. Bei der Definition der mathematischen Semantik ist die Lösung die-
ses Problems scheinbar2 etwas schwieriger als bei der operationalen Semantik,
da wir die mathematische Semantik einer Anweisung c immer am Stück de-
finieren müssen und die Abbildung CJcK nicht punktweise für jeden Zustand
σ definieren dürfen, wie wir das bei der operationalen Semantik getan haben.

Um uns der Lösung des Problems zu nähern, betrachten wir das Problem der
obigen Definition auf einer etwas abstrakteren Ebene. Der Fehler, den wir in
der Definition gemacht haben besteht darin, daß wir ein mathematisches Ob-
jekt x (im obigen Beispiel eine Abbildung) definiert haben, wobei x in seiner
eigenen Definition vorkam. Kurz gesagt haben wir geschrieben x = f(x). Vie-
le Informatiker haben mit einer solchen Definition gar kein Problem. Denn
sie meinen, daß man diese Definition

”
rekursiv“ interpretieren kann. Das ist

aber bei einer mathematischen Definition nicht zulässig. Abgesehen davon,
daß die Mathematik kein

”
eingebautes Konzept“ von Rekursion besitzt (eine

solche Definition ist und bleibt in der Mathematik Unsinn), sind wir ja gera-
de dabei, die mathematischen Grundlagen der Semantik und damit auch die
Grundlagen für die Rekursion zu legen – und dazu dürfen wir natürlich das
Konzept der Rekursion nicht benutzen. Deshalb müssen wir dieses Problem
auf andere Weise lösen.

Tatsächlich liegt die Lösung des Problems schon fast auf der Hand. Denn
wenn die Abbildung f definiert ist, sind damit auch all diejenigen Elemente
x definiert für die gilt x = f(x): die Fixpunkte von f . Die Interpretation der

2Wenn wir unsere Lösung am Ende nochmal ansehen, werden wir feststellen, daß es
genau dieselbe Lösung ist wie bei der operationalen Semantik – sie ist nur etwas anders
verpackt.
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”
Definition“ x = f(x) könnte also sein, daß wir dasjenige x meinen, das die

Gleichung x = f(x) löst, d. h. ein Fixpunkt von f ist. Allerdings gibt es bei
dieser Interpretation noch zwei Probleme:

1. Es kann sein, daß f gar keinen Fixpunkt besitzt. Das gilt zum Beispiel
für λx ∈ N.x+1 oder für λx ∈ B.¬x. Dann existiert das durch x = f(x)
definierte Objekt nicht.

2. Es könnte auch sein, daß f mehrere Fixpunkte besitzt. Das gilt zum
Beispiel für die Identitätsfunktion oder auch für die Abbildung λx ∈
N.x · x.

In beiden Fällen dürfen wir nicht über
”
dasjenige x“ reden, für das x = f(x)

gilt. Die Formulierung
”
dasjenige x welches“ dürfen wir nur benutzen, wenn

wir wissen, daß das bezeichnete Objekt existiert und eindeutig ist3. Wenn es
mehrere Fixpunkte gibt, kann man allerdings versuchen, unter allen Fixpunk-
ten einen auszuzeichnen – beispielsweise den kleinsten bzgl. einer Ordnung.
Dann muß man aber zuvor zeigen, daß der kleinste Fixpunkt existiert4.

Nach diesen allgemeinen Vorüberlegungen betrachten wir die obige Definition
von CJwhile b do cK etwas genauer. Offensichtlich geht in diese Definition
die Semantik der Bedingung b, d. h. BJbK, die Semantik des Schleifenrumpfes
c , d. h. CJcK, und die Semantik der Schleife selbst ein. Wir ersetzen nun
BJbK durch β, CJcK durch γ. Für die Semantik der Schleife selbst schreiben
wir ξ, weil das die Unbekannte ist, nach der wir noch suchen. Mit diesen
Bezeichnungen sieht unsere obige Gleichung wie folgt aus:

• ξ = λσ ∈ Σ.

{
σ falls β(σ) = false
ξ(γ(σ)) falls β(σ) = true

Die rechte Seite dieser Gleichung können wir als eine Abbildung F in den drei
Parametern β, γ und ξ auffassen. Die Gleichung können wir dann kompakt
schreiben als ξ = F(β, γ, ξ). Da wir zunächst β und γ festlegen und dann
eine Lösung der Gleichung für ξ suchen, verbannen wir die Parameter β und
γ in den Index der Abbildung und schreiben Fβ,γ(ξ) anstelle von F(β, γ, ξ).
Dabei bildet Fβ,γ eine eine partielle Abbildung Σ ⇀ Σ auf eine partielle
Abbildung Σ ⇀ Σ ab.

3Dieser und viele weitere Tips zum mathematischen Formulieren von Gedanken finden
sich in dem sehr empfehlenswerten Buch von Beutelspacher [3].

4Zur Erinnerung: Eindeutig ist der kleinste Fixpunkt per Definition.
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Definition 5.4 (Das Schleifenfunktional Fβ,γ)
Für zwei Abbildungen β : Σ → B und γ : Σ ⇀ Σ definieren wir die Abbildung
Fβ,γ : (Σ ⇀ Σ) → (Σ ⇀ Σ) wie folgt:

Fβ,γ(ξ) = λσ ∈ Σ.

{
σ falls β(σ) = false
ξ(γ(σ)) falls β(σ) = true

Die Abbildung Fβ,γ nennen wir das Schleifenfunktional5.

Noch eleganter – aber dafür etwas gewöhnungsbedürftiger – hätten wir schrei-
ben können:

Fβ,γ = λξ ∈ (Σ ⇀ Σ).λσ ∈ Σ.

{
σ falls β(σ) = false
ξ(γ(σ)) falls β(σ) = true

Schön wäre es nun, wenn Fβ,γ für jedes β und γ einen eindeutigen Fixpunkt
besitzen würde, d. h. wenn genau ein ξ mit Fβ,γ(ξ) = ξ existieren würde. Denn
dann würde durch diese Gleichung das ξ eindeutig definiert. Wir müssen dazu
der Reihe nach die folgenden Fragen klären:

1. Gibt es überhaupt ein ξ : Σ ⇀ Σ mit Fβ,γ(ξ) = ξ, d. h. besitzt Fβ,γ

(wenigstens) einen Fixpunkt.

Die Antwort wird ja sein.

2. Wenn Fβ,γ einen Fixpunkt besitzt: Ist dieser Fixpunkt eindeutig? D. h.
gilt für alle ξ, ξ′ ∈ (Σ ⇀ Σ) mit Fβ,γ(ξ) = ξ und Fβ,γ(ξ

′) = ξ′ gilt
ξ = ξ′?

Die Antwort wird im allgemeinen nein sein. Für manche β und γ besitzt
Fβ,γ mehrere verschiedene Fixpunkte.

3. Wenn der Fixpunkt nicht eindeutig ist: Können wir einen bestimmten
Fixpunkt unter allen Fixpunkten auszeichnen, der dann eindeutig ist?

Wir werden unter allen Fixpunkten den bzgl. Mengeninklusion kleinsten
auszeichnen und zeigen, daß er existiert.

4. Wenn wir einen Fixpunkt eindeutigen auszeichnen können: Paßt dieser
Fixpunkt zur operationalen Semantik der Schleife?

5Um hervorzuheben, daß diese Abbildung eine (partielle) Funktion auf eine (partielle)
Funktion abbildet, nennen wir die Abbildung ein Funktional.
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Wir werden sehen, daß der kleinste Fixpunkt genau zur operationalen
Semantik der Schleife paßt.

Bevor wir uns jedoch diesen Fragen zuwenden, werden wir uns durch die
Betrachtung von einigen Beispielen noch mehr Verständnis für das Schleifen-
funktional verschaffen.

Beispiel 5.1 (Schleifen und Schleifenfunktional)

1. Wir wählen w ≡ while true do skip, d. h. β = BJtrueK = λσ ∈ Σ.true
und γ = CJskipK = idΣ. Dann gilt

Fβ,γ(ξ) = λσ ∈ Σ.

{
σ falls β(σ) = false
ξ(γ(σ)) falls β(σ) = true

Wir sehen sofort, daß gilt Fβ,γ(ξ) = ξ.

D. h. für diese spezielle Wahl von β und γ ist das Schleifenfunktional
Fβ,γ die identische Abbildung, d. h. jede partielle Abbildung ξ : Σ ⇀
Σ ist ein Fixpunkt von Fβ,γ. Die kleinste partielle Abbildung ist die
überall undefinierte Abbildung: Ω = ∅. Und das entspricht genau der
Semantik der Schleife w, da diese Schleife für keinen Anfangszustand
terminiert.

2. Wir wählen nun w ≡ while ¬x=0 do x:= x−1, d. h. β = BJ¬ x=0K =
λσ ∈ Σ.σ(x) 6= 0 und γ = CJx:= x−1K = λσ ∈ Σ.σ[σ(x)− 1/x]. Dann
folgt aus

Fβ,γ(ξ) = λσ ∈ Σ.

{
σ falls β(σ) = false
ξ(γ(σ)) falls β(σ) = true

unter Anwendung der Definition von β und γ sofort

Fβ,γ(ξ) = λσ ∈ Σ.

{
σ falls σ(x) = 0
ξ(σ[σ(x)− 1/x]) falls σ(x) 6= 0

Die Frage ist nun, ob auch dieses Fβ,γ einen Fixpunkt besitzt? Die
Antwort ist ja. Und auch in diesem Falle gibt es mehrere Fixpunkte.
Die Abbildung f : Σ ⇀ Σ mit

f(σ) =

{
σ[0/x] falls σ(x) ≥ 0
undef. sonst

ist ein Fixpunkt von Fβ,γ.



3. SEMANTIK FÜR ANWEISUNGEN 71

Daß f ein Fixpunkt von Fβ,γ ist, kann man leicht nachrechnen:

Fβ,γ(f) = λσ ∈ Σ.

 σ falls σ(x) = 0

f(σ[σ(x)− 1/x]) falls σ(x) 6= 0

= λσ ∈ Σ.

 σ[0/x] falls σ(x) = 0
f(σ[σ(x)− 1/x]) falls σ(x) > 0
f(σ[σ(x)− 1/x]) falls σ(x) < 0

= λσ ∈ Σ.

 σ[0/x] falls σ(x) = 0
(σ[σ(x)− 1/x])[0/x] falls σ(x) > 0
undef. falls σ(x) < 0

= λσ ∈ Σ.

 σ[0/x] falls σ(x) = 0
σ[0/x] falls σ(x) > 0
undef. falls σ(x) < 0

= λσ ∈ Σ.

{
σ[0/x] falls σ(x) ≥ 0
undef. falls σ(x) < 0

= f

Es gibt jedoch viele weitere Fixpunkte. Für jeden Zustand σ̂ ist die
Abbildung g : Σ ⇀ Σ mit

g(σ) =

{
σ[0/x] falls σ(x) ≥ 0
σ̂ sonst

ein Fixpunkt von Fβ,γ.

Daß g ein Fixpunkt von Fβ,γ ist kann man auch ganz leicht nachrech-
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nen:

Fβ,γ(g) = λσ ∈ Σ.

{
σ falls σ(x) = 0
g(σ[σ(x)− 1/x]) falls σ(x) 6= 0

= λσ ∈ Σ.

 σ[0/x] falls σ(x) = 0
g(σ[σ(x)− 1/x]) falls σ(x) > 0
g(σ[σ(x)− 1/x]) falls σ(x) < 0

= λσ ∈ Σ.

 σ[0/x] falls σ(x) = 0
(σ[σ(x)− 1/x])[0/x] falls σ(x) > 0
σ̂ falls σ(x) < 0

= λσ ∈ Σ.

 σ[0/x] falls σ(x) = 0
σ[0/x] falls σ(x) > 0
σ̂ falls σ(x) < 0

= λσ ∈ Σ.

{
σ[0/x] falls σ(x) ≥ 0
σ̂ falls σ(x) < 0

= g

Auch hier ist wieder die Frage, welche der Abbildungen f und g der
operationalen Semantik der Schleife entspricht. In diesem Falle ist es
f , die

”
undefiniertere“, also die bzgl. Mengeninklusion kleinere, Abbil-

dung.

f ⊆ g auf partiellen Abbildungen bedeutet, daß f an weniger Stellen
als g definiert ist, und daß die Abbildungen übereinstimmen, wenn bei-
de definiert sind, d. h. für jedes x gilt f(x) ist undefiniert oder es gilt
f(x) = g(x).

Die Beispiele zeigen also, daß der kleinste Fixpunkt des Funktionals Fβ,γ

genau die Semantik der Schleife ergeben. Daß das so ist, werden wir später
noch beweisen. Intuitiv läßt sich das wie folgt begründen: Der kleinste Fix-
punkt ist nur für solche Zustände definiert, für die das durch das Funktional
Fβ,γ unbedingt gefordert ist; für alle anderen Zustände ist der Fixpunkt un-
definiert, was der Nichtterminierung entspricht. Größere Fixpunkte

”
denken

sich für diese Fälle einen mehr oder weniger beliebigen Wert aus“ (vgl. die
Abbildung g im obigen Beispiel), was natürlich nicht dem operationalen Ver-
halten der Schleife entspricht. Im kleinste Fixpunkt gibt es diese Beliebigkeit
nicht, weshalb er genau dem operationalen Verhalten entspricht. Zunächst
begnügen wir uns damit, zu zeigen daß Fβ,γ immer einen kleinsten Fixpunkt
besitzt.
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Satz 5.5 (Schleifenfunktional besitzt kleinsten Fixpunkt)
Für jede Abbildung β : Σ → B und γ : Σ ⇀ Σ besitzt die Abbildung Fβ,γ

einen bezüglich Mengeninklusion kleinsten Fixpunkt.

Beweis: Wir definieren die folgende Regelmenge R über Σ× Σ:

R = {(∅/(σ, σ)) | β(σ) = false}∪
{({(σ′′, σ′)}/(σ, σ′)) | β(σ) = true, γ(σ) = σ′′}

Gemäß Satz 4.8 besitzt nun R̂ einen kleinsten Fixpunkt Q ⊆ Σ × Σ. Wir
zeigen nun, daß Q sogar eine partielle Abbildung ist, d. h. daß gilt Q ∈ Σ ⇀
Σ.
Gemäß Satz 4.8 können wir Q durch die Folge von Q0 ⊆ Q1 ⊆ Q2 ⊆ . . .
mit Q0 = ∅ und Qi+1 = R̂(Qi) charakterisieren: Q =

⋃
i∈N Qi. Um zu zeigen,

daß Q eine partielle Abbildung ist, reicht es also zu zeigen, daß jedes Qi eine
partielle Abbildung ist. Wir beweisen dies durch vollständige Induktion:

Induktionsanfang: Offensichtlich gilt Q0 = ∅ ∈ (Σ ⇀ Σ).

Induktionsschritt: Wir nehmen nun an, daß Qi eine partielle Abbildung
ist, d. h. Qi ∈ (Σ ⇀ Σ) und zeigen, daß auch Qi+1 eine partielle Abbil-
dung ist.

Gemäß Definition gilt

Qi+1 = R̂(Qi) = {(σ, σ) | β(σ) = false}∪
{(σ, σ′) | β(σ) = true, (σ′′, σ′) ∈ Qi, γ(σ) = σ′′}

Da Qi eine partielle Abbildung ist, können wir dies umformulieren zu

Qi+1 = {(σ, σ) | β(σ) = false}∪
{(σ, σ′) | β(σ) = true, Qi(γ(σ)) = σ′}

Dies wiederum können wir umschreiben zu

Qi+1 = λσ ∈ Σ.

{
σ falls β(σ) = false
Qi(γ(σ)) falls β(σ) = true

also einer partiellen Abbildung.

Wir wissen nun also, daß der kleinste Fixpunkt Q von R̂ eine partielle Abbil-
dung auf Σ ist. Die Regeln R haben wir nun aber genau so gewählt, daß für
jede partielle Abbildung f : Σ ⇀ Σ gilt R̂(f) = Fβ,γ(f). Dementsprechend
ist die partielle Abbildung Q auch der kleinste Fixpunkt von Fβ,γ. �
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Wir haben diesen Beweis mit Hilfe des Umwegs über Regeln und die durch sie
induktiv definierte Menge geführt. Das hat zwei Gründe: Erstens zeigt die-
ses Vorgehen, daß der Zusammenhang zwischen der mathematischen Seman-
tik und der operationalen Semantik enger ist, als man oft meint. Zweitens
können wir den Beweis hier führen, ohne bereits die Fixpunkttheorie in ihrer
vollen Allgemeinheit eingeführt zu haben. Das werden wir später nachholen
– damit erübrigt sich dann auch der obige Beweis.

Da wir nun wissen, daß der kleinste Fixpunkt von Fβ,γ immer existiert, führen
wir eine Bezeichnung für ihn ein (später werden wir diese Bezeichnung noch
verallgemeinern).

Definition 5.6 (Kleinster Fixpunkt)
Seien β : Σ → B und γ : Σ ⇀ Σ zwei Abbildungen. Den (bezüglich Men-
geninklusion) kleinsten Fixpunkt von Fβ,γ bezeichnen wir mit fix (Fβ,γ).

Oft schreibt man auch fixFβ,γ anstelle von fix(Fβ,γ).

Jetzt haben wir das mathematische Handwerkszeug bereitgestellt, um die
mathematische Semantik für die Anweisungen induktiv über den Aufbau der
Anweisungen definieren zu können:

Definition 5.7 (Mathematische Semantik für Anweisungen)
Wir definieren die Abbildung C : Com → (Σ ⇀ Σ) induktiv über den Aufbau
der Anweisungen:

• CJskipK = idΣ

• CJv:= aK = λσ ∈ Σ.σ[AJaK(σ)/v]

• CJc0 ; c1K = CJc1K ◦ CJc0K

• CJ if b then c0 else c1K = λσ ∈ Σ.

{
CJc0K(σ) falls BJbK(σ) = true
CJc1K(σ) falls BJbK(σ) = false

• CJwhile b do cK = fix (FBJbK,CJcK)

Für eine Anweisung c nennen wir CJcK die (mathematische) Semantik von c.

Durch den Trick mit dem Fixpunkt haben wir also das Problem mit der
Selbstbezüglichkeit der Definition aufgelöst. Die obige Definition ist mathe-
matisch sauber und eindeutig formuliert. Insbesondere ist die Definition kom-
positional, da sich die Semantik jedes syntaktischen Konstruktes allein mit
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Hilfe der Semantik der Teilkonstrukte definieren läßt. Wir müssen uns jetzt

”
nur noch“ vergewissern, daß es auch die richtige Definition ist, d. h. daß die

mathematische Semantik genau zum gleichen Ergebnis führt wie die opera-
tionale Semantik.

4 Betrachtungen zum kleinsten Fixpunkt

Um noch etwas mehr Verständnis für die Wahl des kleinsten Fixpunktes von
Fβ,γ als Semantik für eine Schleife zu entwickeln, betrachten wir ihn in diesem
Abschnitt nochmal etwas genauer. Im Beweis, daß der kleinste Fixpunkt
von Fβ,γ existiert (Satz 5.5) haben wir die folgende Folge von partiellen
Abbildungen definiert6:

• f0 = Ω, d. h. f0 ist die überall undefinierte Abbildung.

• fi+1 = Fβ,γ(fi), d. h. fi+1 ergibt sich durch einmalige Anwendung des
Funktion Fβ,γ auf fi.

Der kleinste Fixpunkt f von Fβ,γ ist dann die Vereinigung aller fi, d. h.
f =

⋃
i∈N fi. Die Abbildungen fi schauen wir uns nun etwas genauer an:

6In dem Beweis haben wir die Abbildungen fi mit Qi bezeichnet, da noch zu zeigen
war, daß alle Qi partielle Abbildungen sind. Auch haben wir definiert Qi+1 = R̂(Qi); aber
wir haben am Ende des Beweises gesehen, daß R̂ genau dem Funktional Fβ,γ entspricht.
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f0 = Ω

f1 = Fβ,γ(f0)

= λσ ∈ Σ.

{
σ falls β(σ) = false
f0(γ(σ)) falls β(σ) = true

= λσ ∈ Σ.

{
σ falls β(σ) = false
undef. sonst

f2 = Fβ,γ(f1)

= λσ ∈ Σ.

{
σ falls β(σ) = false
f1(γ(σ)) falls β(σ) = true

= λσ ∈ Σ.


σ falls β(σ) = false
γ(σ) falls β(σ) = true und β(γ(σ)) = false
undef. sonst

f3 = Fβ,γ(f2)

= λσ ∈ Σ.

{
σ falls β(σ) = false
f2(γ(σ)) falls β(σ) = true

= λσ ∈ Σ.


σ falls β(σ) = false
γ(σ) falls β(σ) = true und β(γ(σ)) = false
γ(γ(σ)) falls β(σ) = true, β(γ(σ)) = true

und β(γ(γ(σ))) = false
undef. sonst

fi+1 = Fβ,γ(fi)

= λσ ∈ Σ.

{
σ falls β(σ) = false
fi(γ(σ)) falls β(σ) = true

= λσ ∈ Σ.


γj(σ) falls ein j ≤ i mit β(γj(σ)) = false existiert,

so daß für alle k < j gilt β(γk(σ)) = true
undef. sonst

f =
⋃

i∈N fi

= λσ ∈ Σ.


γj(σ) falls ein j ∈ N mit β(γj(σ)) = false existiert,

so daß für alle k < j gilt β(γk(σ)) = true
undef. sonst
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Man sieht also, daß f(σ) das Ergebnis γj(σ) liefert, wenn β(γj(σ)) wahr ist
und für alle k < j gilt β(γk(σ)) falsch ist. Da jede Anwendung von γ genau
einer Ausführung des Schleifenrumpfes entspricht, entspricht γk(σ) dem Zu-
stand nach dem k-ten Schleifendurchlauf und β(γk(σ)) der Auswertung der
Schleifenbedingung nach dem k-ten Schleifendurchlauf. Insgesamt spiegelt
also f genau das operationalen Verhalten der Schleife wieder. Die einzelnen
fi+1 entsprechen dem i-maligen

”
Abwickeln“ der Schleife. Die Folge der Ab-

bildungen f0 ⊆ f1 ⊆ f2 ⊆ f3 ⊆ . . . nähert sich immer weiter an f an. Man
nennt diese Folge deshalb auch Fixpunktapproximation.
Wie die operationale Semantik können wir auch die mathematische Semantik
dazu benutzen, die Äquivalenz zweier Anweisungen zu beweisen. Dabei sind
zwei Anweisungen c0 und c1 äquivalent, wenn sie die gleiche Semantik haben,
d. h. wenn gilt CJc0K = CJc1K.

Daß das so ist, folgt aus der Äquivalenz der mathematischen Semantik und
der operationalen Semantik, die wir erst später beweisen werden (siehe Satz 5.11
und Folgerung 5.12).

Beispiel 5.2
Wir betrachten wieder das Programm w ≡ while b do c und werden zeigen,
daß gilt w ∼ if b then c ; w else skip. Sei nun β = BJbK und γ = CJcK.
Dann gilt

CJwK
= Def. von CJwK als kleinster Fixpunkt von Fβ,γ

Fβ,γ(CJwK)
= Def. von Fβ,γ

λσ ∈ Σ.

{
σ falls β(σ) = false
CJwK(γ(σ)) falls β(σ) = true

= Def. von CJc ; wK und γ = CJcK

λσ ∈ Σ.

{
σ falls β(σ) = false
CJc ; wK(σ) falls β(σ) = true

= Def. CJskipK

λσ ∈ Σ.

{
CJskipK(σ) falls β(σ) = false
CJc ; wK(σ) falls β(σ) = true

= Def. von CJ if b then c ; w else skipK mit β = BJbK
CJ if b then c ; w else skipK

Das Interessante an diesem Beweis ist, daß wir nur ausgenutzt haben, daß
CJwK ein Fixpunkt von Fβ,γ ist. Wir haben nicht ausgenutzt, daß es der
kleinste Fixpunkt ist.
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5 Äquivalenz der Semantiken

Bisher haben wir zwei verschiedene Semantiken für unsere Programmierspra-
che definiert, die operationale und die mathematische Semantik. Natürlich
erwarten wir, daß sie – auch wenn sie auf unterschiedliche Weise definiert
sind – übereinstimmen. Dies werden wir in diesem Abschnitt beweisen. Wie
bereits in Abschnitt 1 motiviert, sind die mathematische und die operationa-
len Semantik äquivalent, wenn für jede Anweisung c und alle Zustände σ, σ′

genau dann CJcK(σ) = σ′ gilt, wenn 〈c, σ〉 → σ′ gilt. Alternativ dazu könnten
wir auch formulieren: CJcK = {(σ, σ′) | 〈c, σ〉 → σ′}
Bevor wir die Äquivalenz der Semantiken für Ausdrücke beweisen können,
müssen wir zunächst die Äquivalenz der Semantiken für arithmetische Aus-
drücke und boolesche Ausdrücke beweisen:

Lemma 5.8 (Äquivalenz der Semantiken für Ausdrücke)
1. Für jeden arithmetischen Ausdruck a gilt AJaK = {(σ, n) | 〈a, σ〉 → n}.

2. Für jeden booleschen Ausdruck b gilt BJbK = {(σ, t) | 〈b, σ〉 → t}.

Beweis: Induktion über den Aufbau der Ausdrücke.

Ein genauerer Beweis für 1. wird in der Übung besprochen. Der Beweis für
2. geht dann analog.

�

Zum Beweis der Äquivalenz der Semantiken für Anweisungen teilen wir die
Äquivalenz in zwei Implikationen auf. Zunächst beweisen wir:

Lemma 5.9
Für jede Anweisung c und alle Zustände σ und σ′ mit 〈c, σ〉 → σ′ gilt auch
CJcK(σ) = σ′.

Beweis: Wir beweisen die Aussage durch Induktion über die Regel für die
operationale Semantik. Das Prädikat P ist dabei

P (〈c, σ〉 → σ′) ≡ CJcK(σ) = σ′

Wir betrachten nun jede Regel der operationalen Semantik:
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〈skip, σ〉 → σ
:

Gemäß Definition von C (d. h. gemäß Def. 5.7) gilt CJskipK = idΣ, d. h.
CJskipK(σ) = σ.

〈a, σ〉 → n
〈v:=a, σ〉 → σ[n/v]

:

Gemäß Lemma 5.8.1 gilt AJaK(σ) = n, gemäß Definition von C gilt
CJv:=aK = λσ ∈ Σ.σ[AJaK(σ)/v]. Damit gilt CJv:=aK(σ) = σ[AJaK(σ)/v] =
σ[n/v].

〈c0, σ〉 → σ′′ 〈c1, σ
′′〉 → σ′

〈c0 ;c1, σ〉 → σ′
:

Gemäß Induktionsvoraussetzung gilt CJc0K(σ) = σ′′ und CJc1K(σ′′) = σ′.
Gemäß Definition von C gilt CJc0; c1K(σ) = CJc1K(CJc0K(σ)) = CJc1K(σ′′) =
σ′.

〈b, σ〉 → true 〈c0, σ〉 → σ′

〈 if b then c0 else c1, σ〉 → σ′
:

Gemäß Lemma 5.8.2 gilt BJbK(σ) = true und gemäß Induktionsvoraus-
setzung gilt CJc0K(σ) = σ′.
Gemäß Definition von C gilt CJ if b then c0 else c1K(σ) = CJc0K(σ) =
σ′.

〈b, σ〉 → false 〈c1, σ〉 → σ′

〈 if b then c0 else c1, σ〉 → σ′
:

Gemäß Lemma 5.8.2 gilt BJbK(σ) = false und gemäß Induktionsvoraus-
setzung gilt CJc1K(σ) = σ′.
Gemäß Definition von C gilt CJ if b then c0 else c1K(σ) = CJc1K(σ) =
σ′.

〈b, σ〉 → false
〈while b do c, σ〉 → σ

:

Gemäß Lemma 5.8.2 gilt BJbK(σ) = false. Gemäß Definition von C gilt
CJwhile b do cK(σ) = FBJbK,CJcK(CJwhile b do cK)(σ) = σ.

〈b, σ〉 → true 〈c, σ〉 → σ′′ 〈while b do c, σ′′〉 → σ′

〈while b do c, σ〉 → σ′
:
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Gemäß Lemma 5.8.2 gilt BJbK(σ) = true und gemäß Induktionsvoraus-
setzung gilt CJcK(σ) = σ′′ und CJwhile b do cK(σ′′) = σ′. Gemäß Defi-
nition von C gilt CJwhile b do cK(σ) = FBJbK,CJcK(CJwhile b do cK)(σ) =
CJwhile b do cK(CJcK(σ)) = CJwhile b do cK(σ′′) = σ′.

�

Insgesamt ist der obige Beweis recht
”
langweilig“. Nur die beiden letzten

Fälle, die über die Schleife argumentieren, sind etwas interessanter. In diesen
beiden Fällen nutzen wir aus, daß die Semantik der Schleife als Fixpunkt
von FBJbK,CJcK definiert ist: CJwhile b do cK(σ) = FBJbK,CJcK(CJwhile b do cK).
In diesem Beweis nutzen wir nicht einmal aus, daß die Semantik der Schleife
als kleinster Fixpunkt von FBJbK,CJcK definiert ist. Das sollte uns etwas stutzig
machen. Denn an irgendeiner Stelle sollte natürlich in den Beweis der Äqui-
valenz auch eingehen, daß wir den kleinsten Fixpunkt als Semantik für die
Schleife gewählt haben. Dies wird aber erst bei der Implikation in die andere
Richtung eingehen. Diese umgekehrte Richtung beweisen wir als nächstes:

Lemma 5.10
Für jede Anweisung c und alle Zustände σ und σ′ mit CJcK(σ) = σ′ gilt auch
〈c, σ〉 → σ′.

Beweis:

Man könnte geneigt sein, zu glauben, daß der Beweis nun ganz analog zum
Beweis von Lemma 5.9 geht, und sich deshalb den Beweis sparen.

Wie bereits oben erwähnt, kann das aber nicht stimmen. Denn im Beweis
von Lemma 5.9 haben wir noch an keiner Stelle ausgenutzt, daß die Semantik
der Schleife als kleinster Fixpunkt des Funktionals Fβ,γ definiert ist. Dieses
Argument muß also in den Beweis dieses Lemmas eingehen. Der Beweis kann
also nicht analog zum Beweis von Lemma 5.9 sein.

Darüber hinaus sieht man schnell, daß der Beweis dieses Lemmas nicht durch
Regelinduktion bewiesen werden kann.

Wir beweisen die Aussage induktiv über den Aufbau der Anweisungen. Das
Prädikat P , das wir beweisen, definieren wir wie folgt:

P (c) ≡ ∀σ, σ′ ∈ Σ.(CJcK(σ) = σ′ ⇒ 〈c, σ〉 → σ′)

Natürlich ist auch in diesem Beweis der einzig spannende Fall das Schleife.
Der Vollständigkeit halber betrachten wir aber alle Konstrukte.
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skip:
Gemäß Def. von C (Def. 5.7) gilt CJskipK = idΣ. Für Zustände σ und
σ′ mit CJskipK(σ) = σ′ gilt also σ = σ′. Gemäß der Regel

〈skip, σ〉 → σ

für die operationale Semantik läßt sich dafür auch 〈skip, σ〉 → σ ab-
leiten.

v:=a:
Gemäß Def. von C gilt σ′ = CJv:=aK(σ) = σ[AJaK(σ)/v]. Gemäß Lem-
ma 5.8.1 gilt dann auch 〈a, σ〉 → AJaK(σ). Mit der Regel

〈a, σ〉 → n
〈v:=a, σ〉 → σ[n/v]

ist dann 〈v:=a, σ〉 → σ[AJaK(σ)/v] herleitbar.

c0 ; c1:
Gemäß Def. von C gilt σ′ = CJc0 ;c1K(σ) = CJc1K(CJc0K(σ)), d. h. es gibt
ein σ′′ mit σ′ = CJc1K(σ′′) und σ′′ = CJc0K(σ). Gemäß Induktionsvor-
aussetzung gilt dann 〈c0, σ〉 → σ′′ und 〈c1, σ

′′〉 → σ′. Mit der Regel

〈c0, σ〉 → σ′′ 〈c1, σ
′′〉 → σ′

〈c0 ;c1, σ〉 → σ′

läßt sich dann 〈c0 ;c1, σ〉 → σ′ herleiten.

c ≡ if b then c0 else c1:
Gelte nun σ′ = CJ if b then c0 else c1K(σ). Wir unterscheiden zwei
Fälle:

1. BJbK(σ) = false:
Gemäß Lemma 5.8.2 gilt dann 〈b, σ〉 → false. Gemäß Def. von
C gilt in diesem Fall σ′ = CJ if b then c0 else c1K(σ) = CJc1K(σ).
Gemäß Induktionsvoraussetzung gilt damit 〈c1, σ〉 → σ′. Mit der
Regel

〈b, σ〉 → false 〈c1, σ〉 → σ′

〈 if b then c0 else c1, σ〉 → σ′

ist dann 〈 if b then c0 else c1, σ〉 → σ′ herleitbar.
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2. BJbK(σ) = true:
Gemäß Lemma 5.8.2 gilt dann 〈b, σ〉 → true. Gemäß Def. von C
gilt in diesem Fall σ′ = CJ if b then c0 else c1K(σ) = CJc0K(σ).
Gemäß Induktionsvoraussetzung gilt damit 〈c0, σ〉 → σ′. Mit der
Regel

〈b, σ〉 → true 〈c0, σ〉 → σ′

〈 if b then c0 else c1, σ〉 → σ′

ist dann 〈 if b then c0 else c1, σ〉 → σ′ herleitbar.

w ≡ while b do c:
Sei γ = CJcK und β = BJbK. Dann gilt gemäß Def. CJwK = fix Fβ,γ.
Wir müssen nun zeigen, daß für alle σ und σ′ mit σ′ = CJwK(σ) auch
〈w, σ〉 → σ′ gilt.

Im Beweis von Satz 5.5 haben wir gesehen, daß fix Fβ,γ die Vereinigung
der folgenden Abbildungen ist:

– f0 = Ω

– fi+1 = Fβ,γ(fi)

D. h. es gilt CJwK = fix Fβ,γ =
⋃

i∈N fi. Mit σ′ = CJwK(σ) gibt es also
ein i ∈ N mit fi(σ) = σ′. Wir zeigen nun durch vollständige Induktion,
daß für jedes i ∈ N mit σ′ = fi(σ) gilt 〈w, σ〉 → σ′:

i = 0: Wegen f0 = Ω gibt es kein σ und σ′ mit σ′ = f0(σ). Deshalb ist
nichts zu zeigen.

i → i + 1: Sei nun σ′ = fi+1(σ). Wir unterscheiden zwei Fälle:

β(σ) = false: Gemäß Def. von fi+1 und gemäß Def. von Fβ,γ gilt
dann σ′ = σ. Mit β = BJbK und Lemma 5.8.2 gilt dann
〈b, σ〉 → false. Gemäß der Regel

〈b, σ〉 → false
〈while b do c, σ〉 → σ

ist dann 〈while b do c, σ〉 → σ herleitbar.

β(σ) = true: Gemäß Def. von fi+1 und gemäß Def. von Fβ,γ gilt
dann σ′ = fi(γ(σ)). Es gibt also ein σ′′ mit σ′′ = γ(σ) =
CJcK(σ) und σ′ = fi(σ

′′).
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Dann gilt gemäß Induktionsvoraussetzung (Induktion über
den Aufbau von c): 〈c, σ〉 → σ′′. Gemäß Induktionsvoraus-
setzung (vollständige Induktion) gilt dann 〈w, σ′′〉 → σ′ und
mit β = BJbK und Lemma 5.8.2 gilt außerdem 〈b, σ〉 → true.
Gemäß der Regel

〈b, σ〉 → true 〈c, σ〉 → σ′′ 〈while b do c, σ′′〉 → σ′

〈while b do c, σ〉 → σ′

ist damit auch 〈while b do c, σ〉 → σ′ herleitbar.

�

Mit Lemma 5.9 und 5.10 haben wir die Äquivalenz der mathematischen und
operationalen Semantik für die Programmiersprache IMP bewiesen. Aller-
dings geht nur in Lemma 5.10 ein, daß die mathematische Semantik einer
Schleife als kleinster Fixpunkt des Funktionals Fβ,γ definiert ist. Wir haben
hier – schon wieder – ausgenutzt, daß sich der kleinste Fixpunkt durch die
Abbildungen f0 ⊆ f1 ⊆ f2 ⊆ . . . approximieren läßt. Das ist eine wesentlich
Eigenschaft des Funktionals Fβ,γ, die wir uns im nächsten Kapitel noch etwas
genauer ansehen werden.
Da wir im Beweis jetzt insgesamt alle Voraussetzungen aus der Definition der
mathematischen Semantik benutzt haben, können uns aber beruhigt zurück-
lehnen und den folgenden Satz genießen:

Satz 5.11 (Mathematische und operationale Semantik)
Für jede Anweisung c ∈ Com gilt CJcK = {(σ, σ′) ∈ Σ× Σ | 〈c, σ〉 → σ′}.

Wir hätten auch schreiben können: CJcK(σ) = σ′ gdw. 〈c, σ〉 → σ′.

Beweis: Folgt unmittelbar aus Lemma 5.9 und 5.10. �

Eine unmittelbare Folgerung dieses Satzes ist, daß auch für die operationale
Semantik für jede Anweisung c und jeden Zustand σ höchstens ein Zustand
σ′ mit 〈c, σ〉 → σ′ existiert. Denn sonst wäre CJcK = {(σ, σ′) ∈ Σ × Σ |
〈c, σ〉 → σ′} keine partielle Abbildung.
Aus dem Satz folgt noch eine weitere schöne Eigenschaft der mathematischen
Semantik, die wir bereits in Beispiel 5.2 benutzt haben: Zwei Anweisungen
sind genau dann äquivalent, wenn sie dieselbe (mathematische) Semantik
haben.
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Folgerung 5.12 (Äquivalenz ist Identität der Semantik)
Zwei Anweisungen c und c′ sind genau dann äquivalent (in Zeichen c ∼ c′),
wenn sie dieselbe Semantik besitzen (in Zeichen CJcK = CJc′K).

Beweis: Die Aussage folgt unmittelbar aus der Definition der Äquivalenz
von Anweisungen mit Hilfe der operationalen Semantik (Def. 3.8) und der
Äquivalenz der mathematischen Semantik und der operationalen Semantik
(Satz 5.11). �

6 Zusammenfassung

In diesem Kapitel haben wir die mathematische Semantik für Anweisungen
definiert. Die wesentliche Anforderung an die Definition der mathematischen
Semantik war, daß sie jedem syntaktischen Objekt c direkt ein semantisches
Objekt CJcK zuordnet. Darüber hinaus muß diese Definition kompositional
sein, d. h. die Definition der Semantik eines syntaktischen Objektes darf nur
die Semantik seiner Teilkonstrukte benutzen. Wir haben gesehen, daß das bei
Schleifen nicht ganz einfach ist. Und wir sind schnell darauf gekommen, daß
wir den kleinsten Fixpunkt des Schleifenfunktionals Fβ,γ benutzen müssen,
um aus diesem Dilemma heraus zu kommen.
Die Beweise der Äquivalenz der mathematischen und operationalen Semantik
haben zwei Dinge gezeigt:

1. Wenn man sich die Definitionen der beidene Semantiken bis zum bitte-
ren Ende ansieht (d. h. wenn man sich auch überlegt, was die

”
Seman-

tik“ einer induktiven Definition ist), unterscheiden sich die Definitionen
der mathematischen und der operationalen Semantik gar nicht so we-
sentlich. Bei der mathematischen Semantik wird die Fixpunkttheorie
explizit benutzt – bei der operationalen Semantik nur implizit. Die ex-
plizite Benutzung der Fixpunkttheorie liefert uns eine kompositionale
Definition der Semantik.

2. Der kleinste Fixpunkt des Funktionals läßt sich durch iterierte Anwen-
dung des Funktionals, also durch die Abbildungen f0 ⊆ f1 ⊆ f2 ⊆ . . .,
approximieren. Darauf kommen wir im nächsten Kapitel noch ausführ-
lich zu sprechen.



Kapitel 6

Fixpunkte und semantische
Bereiche

Sowohl bei der Definition der operationalen Semantik als auch bei der Defi-
nition der mathematischen Semantik haben wir mehr oder weniger explizit
Fixpunkte benutzt. Die Existenz der Fixpunkte haben wir jeweils ad hoc
bewiesen. Es stellt sich jedoch heraus, daß die Beweise immer wieder nach
demselben Schema ablaufen. In diesem Kapitel werden wir deshalb etwas all-
gemeiner untersuchen, unter welchen Voraussetzungen Fixpunkte bestimmter
Funktionen existieren. Dies werden wir in Fixpunktsätzen formulieren.

Tatsächlich haben wir bereits zwei Fixpunktsätze kennen gelernt. Beim Be-
weis, daß für jede Regelmenge die kleinste R-abgeschlossene Menge existiert
(Lemma 4.5 in Kapitel 4) haben wir bereits den Fixpunktsatz von Knaster
und Tarski kennengelernt. Die äquivalente Charakterisierung der induktiv
definierten Menge (Satz 4.8 in Kapitel 4) und auch der Satz über die Exi-
stenz des kleinsten Fixpunktes des Funktionals Fβ,γ (Satz 5.5) entspricht dem
Fixpunktsatz von Kleene. Diese beiden Sätze werden wir in diesem Kapitel
allgemein formulieren, wobei der Satz von Kleene in der Semantik die größere
Bedeutung hat.

Mit Hilfe des Satzes von Kleene wissen wir dann, daß für bestimmte Struk-
turen der kleinste Fixpunkt immer existiert. Allerdings müssen wir dafür
beweisen, daß die betrachtete Struktur die Eigenschaft hat, die im Satz von
Kleene gefordert sind. Weil dieser Nachweis oft recht mühsam ist, geben wir
am Ende systematische Konstruktionsregeln an, die immer zu Strukturen
führen, die die nötigen Eigenschaften besitzen.

85
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1 Grundlagen

Bevor wir die Fixpunktsätze angeben können, müssen wir noch einige weitere
grundlegende Begriffe einführen.

Diese Begriffe wurden bereits in Kapitel 2 definiert. Sie werden hier zur
Auf frischung nochmal kurz wiederholt (und in der Vorlesung nur kurz ange-
deutet).

Definition 6.1 (Obere Schranke und Supremem)
Sei (X,�) eine reflexive Ordnung und Y eine Teilmenge von X.

1. Ein Element x ∈ X heißt obere Schranke von Y , wenn für alle y ∈ Y
gilt y � x.

2. Die kleinste obere Schranke von Y nennen wir, das Supremum von Y ;
wir schreiben dafür auch

∨
Y .

Das Symbol, das für das Supremum einer Menge Y benutzt wird, wird oft
an das Symbol der zugrundeliegenden Ordnung angepaßt. Beispielsweise
schreibt man

⋃
Y für das Supremum bzgl. der Ordnung ⊆ oder oder

⊔
Y

für das Supremum bzgl. der Ordnung v.

Eine obere Schranke von Y ist also ein Element, das größer ist als jedes
Element aus Y . Es gibt Teilmengen, die keine obere Schranke besitzen. Für
X = Y = N mit der üblichen Ordnungsrelation besitzt Y beispielsweise keine
obere Schranke. Wenn wir allerdings X um das Element ω erweitern, besitzt
Y = N eine obere Schranke: ω. Es ist spielt also eine große Rolle, innerhalb
welcher Menge bzw. Ordnung X wir die obere Schranken von Y betrachten.
Auch das Supremum einer Menge muß nicht immer existieren, und, wie bei
den oberen Schranken, kann die Existenz des Supremums einer Menge Y von
der Menge X, innerhalb der wir das Supremum suchen, abhängen. Beispiels-
weise existiert das Supremum von N in N selbst nicht. Aber in N∪{ω} besitzt
N (und jede andere Teilmenge von N) ein Supremum.
Es besteht auch ein enger Zusammenhang zwischen dem größten Element
einer Menge Y und dem Supremum. Wenn nämlich Y ein größtes Element
besitzt, ist dieses größte Element auch das Supremum von Y . Allerdings kann
eine Menge Y auch ein Supremum besitzen, wenn Y kein größtes Element
besitzt. Beispielsweise existiert für N in N ∪ {ω} das Supremum, aber N
besitzt kein größtes Element.
Entsprechend der oberen Schranke kann man auch die unter Schranke und
das Infimum als größte untere Schranke definieren.
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Definition 6.2 (Untere Schranke und Infimum)
Sei (X,�) eine reflexive Ordnung und Y eine Teilmenge von X.

1. Ein Element x ∈ X heißt untere Schranke von Y , wenn für alle y ∈ Y
gilt x � y.

2. Die größte untere Schranke von Y nennen wir, das Infimum von Y ; wir
schreiben dafür auch

∧
Y .

Das Symbol, das für das Infimum einer Menge Y benutzt wird, wird
oft an das Symbol der zugrundeliegenden Ordnung angepaßt. Beispiels
weise schreibt man

⋂
Y für das Infimum bzgl. der Ordnung ⊆ oder oderd

Y für das Infimum bzgl. der Ordnung v.
Oft schreiben wir auch etwas suggestiver

∨
y∈Y y anstelle von

∨
Y .

Beispiel 6.1
1. Sei Q eine beliebige Menge. Dann ist (2Q,⊆) eine Ordnung. Für jede

Teilmenge Y ⊆ 2Q existiert das Supremum
⋃

Y =
∨

y∈Y y und das
Infimum

⋂
Y =

∧
y∈Y y.

Die Potenzmengen sind eine sehr schöne Struktur, da für alle Teilmen-
gen die Infima und Suprema existieren. Leider gilt das für viele andere
Strukturen nicht.

2. Für (N,≤) existiert für jede endliche Teilmenge Y ⊆ N das Supremum
(das größte Element der endlichen Teilmenge Y ); für unendliche Teil-
mengen Y ⊆ N existiert das Supremum dagegen nicht. Infima existieren
aber für jede nicht-leere Teilmenge von N.

Fragen: Was ist das Supremum der leeren Menge? Warum existiert das
Infimum der leeren Menge nicht?

3. Für (N∪ {ω},≤) existieren – wie bereits erwähnt – für jede Teilmenge
das Infimum und das Supremum.

Frage: Was ist das Infimum der leeren Menge?

4. Für die Menge X = {a, b, c, d} mit a < c, b < c, a < d und b < d
existieren die Suprema und die Infima von {a, b} und {c, d} nicht.

Frage: Für welche Teilmengen von X existieren die Infima und die Su-
prema?
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Strukturen, für die
”
alle Suprema und alle Infima“ existieren, sind natürlich

besonders schön. Solche Strukturen heißen vollständige Verbände.

Definition 6.3 (Vollständiger Verband)
Eine reflexive Ordnung (X,�) heißt vollständiger Verband, wenn für jede
Teilmenge Y ⊆ X das Infimum existiert.

In der obigen Definition wird für vollständige Verbände nur gefordert, daß

”
alle Infima“ existieren. In unserer informellen Definition hatten wir jedoch

auch verlangt, daß alle
”
Suprema“ existieren. Der Grund dafür ist, daß aus

der Existenz aller Infima auch die Existenz aller Suprema folgt.

Lemma 6.4 (Vollstängige Verbände und Existenz der Suprema)
Sei (X,�) ein vollständiger Verband. Dann existiert für jede Teilmenge Y ⊆
X das Supremum.

Beweis: Sehr einfach (Übung). �

Zuletzt definieren wir die bezüglich einer Ordnung monoton steigenden Ab-
bildungen.

Definition 6.5 (Monoton steigende Abbildungen)
Seien (X1,�2) und (X2,�2) reflexive Ordnungen. Eine totale Abbildung f :
X1 → X2 heißt monoton steigend, wenn für alle x, y ∈ X1 mit x �1 y auch
f(x) �2 f(y) gilt.

Da bei uns keine monoton fallenden Abbildungen vorkommen, reden wir im
folgenden nur von monotonen Abbildungen, wenn wir monoton steigende
Abbildungen meinen.

Wenn sowohl monoton steigende als auch monoton fallende Abbildungen be-
trachtet werden, nennt man die monoton steigenden manchmal auch isoton
und die monoton fallenden antiton.

2 Satz von Knaster und Tarski

Mit Hilfe dieser Begriffe können wir nun den Fixpunktsatz von Knaster und
Tarski formulieren:

Satz 6.6 (Knaster-Tarski)
Sei (X,�) ein vollständiger Verband und f : X → X eine monotone Abbil-
dung. Dann ist

∧
{x ∈ X | f(x) � x} der kleinste Fixpunkt von f .
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Beweis: Sei Y = {x ∈ X | f(x) � x} und y =
∧

Y .
Wir zeigen zunächst, daß gilt f(y) � y (d. h. daß y ein Präfixpunkt von f ist):
Dazu zeigen wir zunächst, daß f(y) eine untere Schranke von Y ist. Sei also
x ∈ Y beliebig. Da y Infimum von Y ist, gilt y � x. Wegen der Monotonie
von f gilt also auch f(y) � f(x). Mit x ∈ Y und der Definition von Y gilt
auch f(x) � x; insgesamt gilt also f(y) � x. Damit ist f(y) also eine unter
Schranke von Y und, da y die größte untere Schranke von Y ist gilt f(y) � y.
Als nächstes zeigen wir, daß y ein Fixpunkt von f ist: Aus f(y) � y folgt
wegen der Monotonie von f auch f(f(y)) � f(y). Damit gilt f(y) ∈ Y . Da
y das Infimum von Y (also insbesondere eine untere Schranke von y) ist, gilt
y � f(y). Zusammen mit f(y) � y gilt f(y) = y.
Es bleibt zu zeigen, daß y kleiner als jeder andere Fixpunkt ist. Sei also
x ein beliebige Fixpunkt von f , d. h. ein x ∈ X mit f(x) = x. Dann gilt
insbesondere f(x) � x. Damit gilt x ∈ Y . Da y das Infimum von Y ist gilt
y ≺ x.
Insgesamt haben wir damit gezeigt, daß y =

∧
{x ∈ X | f(x) � x} der

kleinste Fixpunkt von f ist. �

Diesen Satz hätten wir bereits zum Beweis von Lemma 4.5 benutzen können,
wo wir gezeigt haben, daß es eine kleinste R-abgeschlossen Menge gibt. Aller-
dings mußten wir dort das Lemma noch direkt beweisen (vgl. Übung), weil
wir den Satz noch nicht kannten. Dabei ist dort (2X ,⊆) der zugrundeliegen-

de vollständige Verband und R̂ ist die monotone Abbildung, für die wir die
Existenz des kleinsten Fixpunktes bewiesen haben.

Streng genommen haben wir in Lemma 4.5 nicht die Existenz des kleinsten
Fixpunktes von R̂ bewiesen, sondern die Existenz des kleinsten Präfixpunk-
tes. Dabei sind die Präfixpunkte von R̂ gerade die R-abgeschlossenen Mengen
(R̂(Q) ⊆ Q). Wir haben also die Existenz der kleinsten R-abgeschlossenen
Menge bewiesen. Wie man im obigen Beweis sieht, fällt der kleinste Präfix-
punkt aber mit dem kleinsten Fixpunkt zusammen.

3 Semantische Bereiche und Satz von Kleene

Der Fixpunktsatz von Knaster und Tarski ist ein schöner Satz und hat viele
Anwendungen. Leider sind die Strukturen, die wir bei der Definition von Se-
mantiken benutzen, meist keine vollständigen Verbände. Wir können diesen
Satz in der Semantik also oft nicht anwenden. Beispielsweise ist das Funk-
tional Fβ,γ bei der Definition der mathematischen Semantik auf der Menge
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der partiellen Abbildungen definiert. Diese bilden leider keinen vollständigen
Verband.
Deshalb benötigen wir in der Semantik einen anderen Fixpunktsatz, der auch
für allgemeinere Strukturen gilt – wie zum Beispiel für die Menge der partiel-
len Abbildungen. Außerdem werden wir sehen, daß wir für diese Strukturen
den kleinsten Fixpunkt der Abbildung approximieren können.

Die Pioniere der Semantik haben lange versucht, die zugrundeliegenden Struk-
turen zu vollständigen Verbänden zu machen, um eine elegante Definition
einer mathematische Semantik auf der Basis des Satzes von Knaster und
Tarski zu formulieren. Es hat sich aber herausgestellt, daß dies nicht so gut
funktioniert und es zweckmäßiger ist, nach anderen Strukturen mit anderen
Fixpunktsätzen zu suchen.

Die Struktur, auf der der Fixpunktsatz operiert, nennen wir semantischen
Bereich1.

Definition 6.7 (Semantischer Bereich)
Eine reflexive Ordnung (D,v) heißt semantischer Bereich, wenn für jede (un-
endliche) aufsteigende Kette d0 v d1 v d2 v . . . mit di ∈ D das Supremum⊔

i∈N di existiert.
Der semantische Bereich heißt semantischer Bereich mit kleinstem Element,
wenn D ein kleinstes Element besitzt. Das kleinste Element wird dann mit
⊥D bezeichnet.

Wenn D aus dem Kontext hervor geht, schreiben wir auch kurz ⊥ anstelle
von ⊥D.

Oft werden in der Literatur nur semantische Bereiche mit kleinstem Element
betrachtet. Dann wird aber meist auf den Zusatz ”mit kleinstem Element“
verzichtet.

Offensichtlich ist jeder vollständige Verband auch ein semantischer Bereich,
denn es existieren alle Suprema, also auch die für die aufsteigenden Ketten.
Allerdings gibt es auch andere Strukturen, die ein semantischer Bereich sind
– das war ja schließlich das Ziel der Übung.

Beispiel 6.2 (Semantische Bereiche)
1. Für jede Menge X ist die Menge der partiellen Abbildungen D = (X ⇀

X) mit ⊆ (auf den entsprechenden Relationen der Funktionen) als Ord-
nung ein semantischer Bereich.

1Im Englischen nennt man semantische Bereiche domain oder auch complete partial
order (cpo). Deshalb benutzen wir D als Symbol für die zugrundeliegende Menge.
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Zur Erinnerung f ⊆ f ′ bedeutet, daß an den Stellen x, an denen f(x)
definiert ist, auch f ′(x) = f(x) gilt. f ′ kann aber an mehr Stellen defi-
niert sein. f ⊆ f ′ bedeutet also, daß f ′ ”definierter ist als“ f .

Für eine aufsteigende Kette f0 ⊆ f1 ⊆ f2 ⊆ . . . ist f =
⋃

i∈N fi das
Supremum.

Dieser semantische Bereich besitzt auch ein kleinstes Element, nämlich
die überall undefinierte Funktion: ⊥(X⇀X)= Ω = ∅

2. Für jede Menge A ist die Menge der endlichen und unendlichen Sequen-
zen A∞ = A∗ ∪ Aω mit der Präfixrelation v ein semantischer Bereich
mit der leeren Sequenz als kleinstem Element ⊥A∞= ε .

Für die folgende Kette ε v a v ab v aba v abab v . . . ist die unendli-
che Sequenz ababab . . . das Supremum.

3. Für jede Menge X ist (X, idX) ein semantischer Bereich. Dieser se-
mantische Bereich heißt auch der diskrete semantische Bereich über X.
Dieser semantische Bereich besitzt im allgemeinen jedoch kein kleinstes
Element.

Für semantische Bereiche hat nicht mehr jede monotone Abbildung einen
kleinsten Fixpunkt. Da wir die Anforderungen an die zugrundeliegende Struk-
tur abgeschwächt haben, müssen wir die Anforderungen an die Abbildungen
verschärfen, um zu gewährleisten, daß sie einen kleinsten Fixpunkt besitzen.

Definition 6.8 (Stetige Abbildung)
Seien (D1,v1) und (D2,v2) semantische Bereiche (die nicht notwendig ein
kleinstes Element besitzen müssen). Eine Abbildung f : D1 → D2 heißt
stetig, wenn für jede nicht-leere aufsteigende Kette d0 v1 d1 v1 d2 v1 . . .
in D1 das Supremum von {f(di) | i ∈ N} existiert und gilt

⊔
i∈N f(di) =

f(
⊔

i∈N di).

Die Supremumsbildung kann man als Limesbildung auffassen (vgl. das Bei-
spiel mit der unendlichen Sequenz abababa . . . als ”Limes“ der Menge {ε, a, ab, aba, abab, . . .}).
Die Stetigkeit einer Abbildung bedeutet dann, daß man Limesbildung und
Funktionsanwendung vertauschen kann. In diesem Sinne entspricht die De-
finition der Stetigkeit dem Begriff der Stetigkeit von Abbildungen auf den
reellen Zahlen, wie sie aus der Analysis bekannt ist.

Aus der Definition der stetigen Abbildungen folgt unmittelbar:
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Lemma 6.9 (Stetige Abbildungen sind monoton)
Seien (D1,v1) und (D2,v2) semantische Bereiche. Jede stetige Abbildung
f : D1 → D2 ist monoton.

Umgekehrt existiert für jede monotone Abbildung f : D1 → D2 und jede
aufsteigende Kette d0 v1 d1 v1 d2 v1 . . . auch das Supremum

⊔
i∈N f(di).

Denn wegen der Monotonie von f gilt f(d0) v2 f(d1) v2 f(d2) v2 . . ..
Da (D2,v2) ein semantischer Bereich ist, existiert also auch das Supremum
dieser Kette; allerdings gilt nicht unbedingt

⊔
i∈N f(di) = f(

⊔
i∈N di).

Bevor wir uns Beispiele für stetige Abbildungen ansehen, betrachten wir ein
Beispiel für nicht-stetige Abbildungen. Die sind viel interessanter, da die
meisten monotonen Abbildungen, die wir uns ausdenken können, auch stetig
sind.

Beispiel 6.3 (Monotone aber nicht stetige Abbildung)
Sei A = {a, b} und (A∞,v) der semantische Bereich der endlichen und un-
endlichen Sequenzen über A mit der Präfixrelation v als Ordnung. Wir de-
finieren nun die Abbildung f : A∞ → A∞ durch

• f(σ) = ε für σ ∈ A∗, d. h. für endliche Sequenzen über A und

• f(σ) = a für σ ∈ Aω, d. h. für unendliche Sequenzen über A.

Offensichtlich ist f monoton. Wir betrachten nun die aufsteigende Kette von
Sequenzen aus A∞ mit σi = ai. Das Supremum dieser Kette ist die unendliche
Sequenz σ = aaaaa . . .. Also gilt f(

⊔
i∈N σi) = f(aaaa . . .) = a. Allerdings

gilt für jedes i ∈ N: f(σi) = ε. Und damit gilt
⊔

i∈N f(σi) =
⊔

i∈N ε = ε.
Der Grund für dieses Verhalten ist, daß die Abbildung f für unendliche Se-
quenzen einen Sprung macht (von ε für alle endlichen und auch extrem langen
Sequenzen auf a für unendliche Sequenzen).

Beispiele für stetige Abbildungen sind leichter zu finden: Beispielsweise ist
die Abbildung R̂ für jede Menge von Regeln R (mit jeweils endlich vielen
Voraussetzungen) über Q stetig. Auch die Abbildung length : A∞ → N∪{ω},
die jeder Sequenz ihre (endliche oder unendliche) Länge zuordnet, ist stetig.
Mit diesen Begriffen können wir nun den Fixpunktsatz von Kleene formulie-
ren:

Satz 6.10 (Fixpunktsatz von Kleene)
Sei (D,v) ein semantischer Bereich mit kleinsten Element ⊥ und sei f : D →
D eine stetige Abbildung. Dann existiert das Supremum

⊔
i∈N f i(⊥) und es

ist der kleinste Fixpunkt von f .
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d. h. fix(f) =
⊔

i∈N f i(⊥)

Beweis:

Der Beweis verläuft ganz analog zum Beweis von Satz 4.8.

Zunächst beweisen wir durch vollständige Induktion, daß für jedes i ∈ N gilt
f i(⊥) v f i+1(⊥):

i = 0: f 0(⊥) =⊥v f(⊥) = f 1(⊥).

i → i + 1 : Gemäß Induktionsvoraussetzung gilt f i(⊥) v f i+1(⊥). Da f ste-
tig und damit gemäß Lemma 6.9 auch monoton ist, gilt f(f i(⊥)) v
f(f i+1(⊥)). Also gilt f i+1(⊥) v f i+2(⊥).

Die f i(⊥) bilden also eine aufsteigende Kette in (D,v). Da (D,v) ein se-
mantischer Bereich ist, existiert das Supremum d =

⊔
i∈N f i(⊥).

Wir zeigen nun, daß d ein Fixpunkt von f ist:

f(d) = Def. d
f(

⊔
i∈N f i(⊥)) = f stetig⊔

i∈N f(f i(⊥)) = Def f i+1⊔
i∈N f i+1(⊥) = ⊥ ist kleinstes Element⊔
i∈N f i+1(⊥)t ⊥= Def. f 0(⊥)⊔
i∈N f i+1(⊥) t f 0(⊥) = Umsortierung⊔
i∈N f i(⊥) = d

Zuletzt zeigen wir, daß d der kleinste Fixpunkt von f ist. Sei d′ ein beliebiger
Fixpunkt von f , d. h. d′ ∈ D mit f(d′) = d′. Wir zeigen durch vollständige
Induktion, daß für jede i ∈ N gilt f i(⊥) v d′:

i = 0: f 0(⊥) =⊥v d′, da ⊥ das kleinste Element von D ist.

i → i + 1: Gemäß Induktionsannahme gilt f i(⊥) v d′. Da f stetig und damit
monoton ist, gilt auch f i+1(⊥) v f(d′) = d′.

Damit ist d′ eine obere Schranke für alle f i(⊥). Da d die kleinste obere
Schranke aller f i(⊥) ist (Supremum), gilt d v d′. �

Zum besseren Verständnis betrachten wir einige Beispiele.
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Beispiel 6.4 (Fixpunkte von stetigen Abbildungen)
1. Sei R eine Regelmenge über X, wobei jede Regel nur endlich viele

Voraussetzungen hat. Dann ist R̂ auf der Menge der Teilmengen von
X bezüglich ⊆ eine stetige Abbildung (das werden wir in der Übung
beweisen).

Dann ist IR =
⋃

i∈N Qi mit Q0 = ∅ und Qi+1 = R̂(Qi) der kleinste

Fixpunkt von R̂ (vgl. Satz 4.8).

2. Sei A eine endliche Menge mit a ∈ A und A∞ die Menge der endlichen
und unendlichen Sequenzen über A und length : A∞ → N ∪ {ω} die
Abbildung, die jeder Sequenz σ ∈ A∞ ihre Länge zuordnet.

Dann ist die Abbildung f : A∞ → A∞ mit f(σ) = alength(σ) stetig
(übrigens ist auch die Abbildung length stetig).

Die Abbildung besitzt also in A∞ einen kleinsten Fixpunkt.

Frage: Was ist der kleinste Fixpunkt von f?
Frage: Was ist der kleinste Fixpunkt von f mit f(σ) = alength(σ)+1?

Der Fixpunktsatz von Kleene hat gegenüber dem Satz von Knaster und
Tarski zwei wesentliche Vorteile:

1. Er funktioniert auch dann, wenn die zugrundeliegende Struktur kein
vollständiger Verband ist. Es reicht, wenn sie ein semantischer Bereich
ist. Erfreulicherweise sind die meisten Strukturen, die in der Semantik
vorkommen semantische Bereiche, bzw. lassen sich einfach in solche
überführen.

2. Ein Problem des Satzes von Knaster und Tarski ist, daß der kleinste
Fixpunkt als Durchschnitt aller Präfixpunkte charakterisiert ist. Wir
müssen im allgemeinen einen Durchschnitt über unendlich viele Mengen
bilden (die wir nicht einmal systematisch konstruieren können). Der
Satz liefert also kein konstruktives Verfahren.

Im Gegensatz dazu erlaubt uns der Satz von Kleene die systematische
Konstruktion des Fixpunktes d =

⊔
i∈N f i(⊥). Natürlich ist auch dies

eine unendliche Konstruktion. Allerdings kommen wir mit jedem f i(⊥)
etwas näher an den Fixpunkt heran. Der Fixpunkt wird also durch diese
Folge approximiert. Wir sprechen deshalb auch von Fixpunktapproxi-
mation. Bei der Semantik der Schleife haben wir gesehen, daß es für
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einen konkreten Zustand reicht, ein f i(⊥) zu betrachten; daß also eine
Approximation reicht.

In Kapitel 4 haben wir verschiedene Techniken zum induktiven Beweisen ken-
nen gelernt. Diese Techniken werden wir hier noch um eine weitere Technik
ergänzen. Mit dieser Technik kann man Eigenschaften des kleinsten Fixpunk-
tes beweisen. Da wir den Fixpunkt einer stetigen Abbildung betrachten, muß
dazu die zu beweisende Eigenschaft (bzw. das Prädikat) auch stetig sein.

Definition 6.11 (Stetige Eigenschaft)
Sei (D,v) ein semantischer Bereich mit kleinstem Element. Ein Prädikat
P ⊆ D heißt stetig, wenn für jede aufsteigende Kette p0 v p1 v p2 v . . . mit
pi ∈ P für alle i ∈ N auch für das Supremum gilt

⊔
i∈N pi ∈ P .

Achtung: Es gibt andere Definitionen von stetigen Prädikaten.

Prinzip 6.12 (Berechnungsinduktion)
Sei (D,v) ein semantischer Bereich mit kleinstem Element ⊥, sei f : D → D
eine stetige Abbildung und P ein stetiges Prädikat mit

• P (⊥) und

• für alle d ∈ D mit P (d) gilt auch P (f(d)).

Dann gilt auch P (fix (f)), d. h. das Prädikat gilt auch für den kleinsten Fix-
punkt von f .

Beweis: Diese Beweisprinzip läßt sich mit Hilfe der Charakterisierung des
kleinsten Fixpunktes durch den Satz von Kleene und unter Ausnutzung der
Stetigkeit von P auf die vollständige Induktion zurückführen (Übungsaufga-
be). �

4 Konstruktion Semantischer Bereiche

Der Satz von Kleene liefert uns eine sehr elegante Theorie über die Existenz
der Fixpunkte von stetigen Abbildungen. Um den Satz von Kleene anwenden
zu können, müssen wir allerdings erst einmal beweisen, daß die Voraussetzun-
gen das Satzes von Kleene vorliegen, d. h. daß die zugrundeliegende Ordnung
ein semantischer Bereich ist und daß die Abbildung, deren Fixpunkt wir
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betrachten, stetig ist. Der Nachweis dieser Eigenschaften ist teilweise recht
mühselig. Deshalb geben wir in diesem Abschnitt einige einfache semantische
Bereiche und stetige Abbildungen an; darüber hinaus geben wir Konstruktio-
nen an, mit deren Hilfe man aus semantischen Bereichen weitere semantische
Bereiche und neue stetige Abbildungen bilden kann. Wenn wir uns auf so
konstruierte Bereiche und Abbildungen einschränken, wissen wir ohne weite-
ren Nachweis, daß es sich um semantische Bereiche und stetige Abbildungen
handelt.

In diesem Kapitel verzichten wir im wesentlichen auf den Nachweis der Be-
hauptungen. In dem meisten Fällen ist der Nachweis jedoch relativ einfach.

4.1 Diskrete Bereiche

Jede Menge X zusammen mit der identischen Relation idX bildet einen se-
mantischen Bereich (X, idX). Wir nennen diese semantischen Bereiche dis-
krete semantische Bereiche. Für zwei diskrete semantische Bereiche (X, idX)
und (Y, idY ) ist jede Abbildung f : X → Y stetig.

4.2 Komposition

Seien (D1,v1), (D2,v2) und (D3,v3) semantische Bereiche und f : D1 → D2

und g : D2 → D3 stetige Abbildungen. Dann ist auch g ◦ f eine stetige
Abbildung (von D1 nach D3).

4.3 Produkt und Projektion

Wenn (D1,v1), . . . (Dn,vn) semantische Bereiche sind, dann ist (D,v) mit
D = D1×D2×. . .×Dn und (d1, . . . , dn) v (d′1, . . . , d

′
n) gdw. d1 v d′1, . . . , dn v

d′n ein semantischer Bereich. Dieser semantische Bereich heißt das (endliche)
Produkt der semantischen Bereiche (D1,v1), . . . (Dn,vn). Wenn jeder seman-
tische Bereich (Di,vi) ein kleinstes Element ⊥Di

besitzt, dann besitzt das
Produkt ebenfalls ein kleinstes Element: ⊥D= (⊥D1 ,⊥D2 , . . . ,⊥Dn).
Für jedes (Di,vi) ist die Abbildung πi : D → Di mit πi((d1, . . . , dn)) = di ei-
ne stetige Abbildung. Wir nennen sie die Projektion (auf die i-te Komponen-
te). Sei nun (E,v) ein weiterer semantischer Bereich und seien fi : E → Di

stetige Abbildungen. Dann ist die Abbildung 〈f1, . . . , fn〉 : E → D mit
〈f1, . . . , fn〉(e) = (f1(e), . . . , fn(e)) eine stetige Abbildung.
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Für 〈f1, . . . , fn〉 und jedes i ∈ {1, . . . , n} gilt πi◦〈f1, . . . , fn〉 = fi. Tatsächlich
wird das Produkt, die Projektionsfunktion und die Produktfunktion über diese
Eigenschaft definiert.

4.4 Funktionsräume

Für die Semantik besonders interessant sind Funktionsräume, da diese die
semantischen Objekte enthalten, die wir Programmen als Semantik zuordnen
wollen. Für zwei semantische Bereiche (D,vD) und (E,vE) definieren wir
[D → E] = {f : D → E | f ist stetig}.

Zur Erinnerung: Mit D → E oder (D → E) bezeichnen wir die totalen
Abbildungen von D nach E. Dagegen bezeichnet [D → E] nur die stetigen
totalen Abbildungen.

Auf den stetigen Abbildungen [D → E] definieren wir die Ordnung v[D→E]

wie folgt: Für zwei Abbildungen f, g ∈ [D → E] gilt f v[D→E] g genau dann,
wenn für jedes d ∈ D gilt f(d) vE g(d), d. h. die Ordnung ist punktweise
definiert.

Diese Definition entspricht gerade unserer Sichtweise bei der Definition der
Ordnung auf partiellen Abbildungen: f ”ist weniger stark definiert als“ g.Dabei
bedeutet f(d) =⊥E, daß f an der Stelle d völlig undefiniert ist. Darauf kom-
men wir später noch zurück.

Dann ist ([D → E],v[D→E]) ein semantischer Bereich, der Funktionsraum
von (D,vD) nach (E,vE). Wenn (E,vE) ein kleinstes Element ⊥E besitzt,
dann besitzt auch der semantische Bereich ([D → E],v[D→E]) ein kleinstes
Element: ⊥[D→E] (d) =⊥E für jedes d ∈ D.
Mit D, E und [D → E] ist natürlich auch das Produkt [D → E] × D ein
semantischer Bereich. Die folgende Abbildung apply : ([D → E] ×D) → E
mit apply(f, d) = f(d) ist ebenfalls stetig.

Kurz können wir dafür auch schreiben apply ∈ [([D → E]×D) → E].

Mit D, E und F sind auch [(F ×D) → E] und [F → [D → E]] semantische
Bereiche. Die Abbildung curry : [(F × D) → E] → [F → [D → E]] ist
definiert durch curry(f) = λx ∈ F.λd ∈ D.f(x, d) für alle f ∈ [(F ×D) →
E].

curry macht aus einer Abbildung f mit zwei Argumenten, eine Abbildung
g mit einem Argument. Das Ergebnis der Abbildung g ist eine weitere Ab-
bildung in dem verbleibenden Argument, das dann das Endergebnis der ur-
sprünglichen Abbildung f mit beiden Argumenten liefert: curry(f) = g mit
g(x)(d) = f(x, d) oder kurz curry(f)(x)(d) = f(x, d).
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Auch die Abbildung curry ist stetig.
Zuletzt betrachten wir die Abbildung, die jeder stetigen Abbildung den klein-
sten Fixpunkt zuordnet. Für einen semantischen Bereich D mit kleinstem
Element ist die Abbildung fix : [D → D] → D, die jeder stetigen Abbildung
f : D → D ihren kleinsten Fixpunkt zuordnet, stetig.

4.5 Lifting

Der Fixpunktsatz von Kleene (Satz 6.10) ist nur anwendbar, wenn der zu-
grundeliegende semantische Bereich ein kleinstes Element besitzt. Für seman-
tische Bereiche ohne kleinstes Element ist er nicht anwendbar. Wir können
einen semantischen Bereich ohne kleinstes Element, jedoch kanonisch in einen
semantischen Bereich mit kleinstem Element umwandeln. Dazu fügt man im
wesentlichen nur ein kleinste Element hinzu. Das nennen wir Lifting und für
einen semantischen Bereich D bezeichnen wir das Lifting mit D⊥.
Im Detail ist die Definition des Liftings etwas aufwendiger. Sei (D,vD) ein
semantischer Bereich, der nicht notwendigerweise ein kleinstes Element ent-
halten muß. Sei b.c : D → X eine injektive Abbildung und ⊥ ein Element,
das nicht im Bild von b.c vorkommt.

D. h. für alle d, d′ ∈ D mit d 6= d′ gilt auch bdc 6= bd′c und es gibt kein d ∈ D
mit bdc =⊥.

Dann definieren wir den semantischen Bereich (D⊥,vD⊥) durch D⊥ = {bdc |
d ∈ D}∪{⊥} mit ⊥vD⊥ d̂ für jedes d̂ ∈ D⊥ und bdc vD⊥ bd′c gdw. d vD d′.
Wir nennen (D⊥,vD⊥) das Lifting von (D,vD).

Die Abbildung b.c und das Element ⊥ ”fallen bei uns vom Himmel“. Man
kann sie mit den Techniken der Allgemeinen Algebra bis auf Isomorphie ein-
deutig charakterisieren. Darauf gehen wir hier aber nicht näher ein. Wir
gehen einfach davon aus, daß sie uns gegeben werden.

Offensichtlich ist (D⊥,vD⊥) ein semantischer Bereich mit kleinstem Element
⊥, wenn (D,vD) ein semantischer Bereich ist. Darüber hinaus ist die Abbil-
dung b.c : D → D⊥ stetig.
Sei nun (E,vE) ein weiterer semantischer Bereich mit kleinstem Element
⊥E und sei f : D → E eine stetige Abbildung. Dann ist die Abbildung
f ∗ : D⊥ → E mit f ∗(bdc) = f(d) und f ∗(⊥) =⊥E ebenfalls stetig. Wir
nennen die Abbildung f ∗ die strikte Erweiterung von f .



4. KONSTRUKTION SEMANTISCHER BEREICHE 99

In der Semantik versucht man meist, alle Abbildungen total zu machen. Un-
definierte Resultate und Eingaben werden dann durch ein spezielles Element
repräsentiert – nämlich das kleinste Element des semantischen Bereiches.
Wenn wir also ⊥ als einen undefinierten Wert ansehen, liefert f∗ für eine
undefinierte Eingabe auch eine undefinierte Ausgabe! Funktionen, die für ei-
ne undefinierte Eingabe eine undefinierte Ausgabe liefern nennt man strikt.

Für die Abbildung f ist die undefinierte Eingabe ⊥ noch gar nicht zulässig.
Durch die strikte Erweiterung f∗ wird dies zum Ausdruck gebracht.

Noch allgemeiner können wir ∗ als einen Operator ∗ bzw. eine Abbildung
auffassen, die jede stetige Abbildung f auf die stetige Abbildung f ∗ abbildet.
Um das deutlicher zu machen, können wir auch schreiben f ∗ = (f)∗. Dann
ist (.)∗ eine Abbildung aus [D → E] → [D⊥ → E]. Diese Abbildung ist sogar
stetig.
Wenn f durch einen λ-Ausdruck f ≡ λx ∈ D.e definiert ist, schreibt man
für die Anwendung der strikten Erweiterung von f auf ein Element d ∈ D⊥
oft auch f ∗(d) ≡ let x ⇐ d.e.

In dieser Notation kann man letx ⇐ d als eine Zuweisung lesen. Dabei
wird der Wert von d an x übergeben, wenn er definiert (also nicht ⊥ ist)
und der Ausdruck e wird dann mit diesem Wert ausgewertet. Wenn d jedoch
nicht definiert ist (d. h. die Auswertung nicht terminiert) ist, scheitert bereits
die Zuweisung und das Ergebnis ist undefiniert. Am besten sieht man den
Unterschied bei einer Abbildung, die ein Konstantes Ergebnis besitzt: f =
λx ∈ N.1. Dann gilt f∗(⊥) ≡ letx ⇐⊥ .1 =⊥. Im Gegensatz dazu würde für
f ′ ≡ λx ∈ D⊥.b1c gelten f ′(⊥) = b1c.
Für f∗(7) ≡ letx ⇐ 7.1 = b1c, denn das Konstrukt let bildet implizit von N
auf N⊥ ab.

Durch die Konstruktion des Liftings können wir nun alle Mengen bzw. die
entsprechenden diskreten semantischen Bereiche, die wir in einer Program-
miersprache benutzen wollen, zu einem semantischen Bereich mit kleinstem
Element machen. Ein Beispiel ist B⊥. Alle Operationen auf B können wir
mit Hilfe der strikten Erweiterung auf B⊥ ”

liften“. Beispielsweise ist ∨∗ die
strikte Erweiterung der booleschen Operation ∨. Mit der oben eingeführten
Notation können wir schreiben b ∨∗ b′ ≡ let x ⇐ b.let x′ ⇐ b′.x ∨ x′.

4.6 Endliche Summe

Als letzte Konstruktion führen wir disjunkte Vereinigung von semantischen
Bereichen ein. Für Mengen D1, . . . , Dn bezeichnet D1 + . . .+Dn die disjunkte
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Vereinigung. Das entspricht den variant records in PASCAL oder einer dis-
junkten und vollständigen Vererbungsbeziehung in UML. Es gibt verschie-
dene Möglichkeiten, die disjunkte Vereinigung zu definieren. Die eleganteste
Methode benutzt wieder die Techniken der Allgemeinen Algebra. Wir benut-
zen hier die etwas unelegantere Technik der expliziten Definition. Für eine
endliche Folge von Mengen D1, . . . , Dn definieren wir die disjunkte Vereini-
gung wie folgt: D = {(i, d) | i ∈ {1, . . . , n}, d ∈ Di}. Die erste Komponente
gibt an, aus welcher Menge das Element kommt, die zweite bezeichnet das
Element selbst. Auf diese Weise können wir für jedes Element eindeutig sa-
gen, aus welcher Menge es kommt, selbst dann, wenn die Ausgangsmengen
nicht disjunkt sind. Wir machen die Mengen also mit Hilfe der ersten Kom-
ponente explizit disjunkt.
Für jedes i ∈ {1, . . . , n} definieren wir eine Abbildung ini : Di → D mit
ini(d) = (i, d), die Injektion2 von den einzelnen Mengen Di in D.
Für semantische Bereiche (D1,vD1), . . . , (Dn,vDn) definieren wir den seman-
tischen Bereich (D,vD) mit (i, d) v (j, d′) genau dann, wenn i = j und
d vDi

d′. Wir nennen diesen semantischen Bereich die Summe der seman-
tischen Bereiche (D1,vD1), . . . , (Dn,vDn). Für n ≥ 2 und Di 6= ∅ besitzt
die Summe kein kleinstes Element, selbst dann nicht, wenn jeder einzelne
semantische Bereich (Di,vDi

) ein kleinstes Element besitzt.
Für stetige Abbildungen f1 : D1 → E, . . . , fn : Dn → E ist die Abbildung
[f1, . . . fn] : D → E definiert durch [f1, . . . fn]((i, d)) = fi(d). Diese Abbil-
dung ist stetig.

Es gilt ähnlich wie beim Produkt und den Projektionen [f1, . . . , fn]◦ ini = fi.

5 Eine Sprache für stetige Abbildungen

Aufbauend auf den Konstrukten des vorangegangenen Abschnittes definieren
wir nun ein Sprache, die es uns erlaubt, stetige (und nur stetige) Abbildun-
gen zu definieren. Allerdings halten wir uns nicht mit syntaktischen Details
auf. Im wesentlichen werden wir dazu die λ-Ausdrücke benutzen: λx ∈ D.e.
Dabei müssen wir aber darauf achten, daß der Ausdruck e so gebaut ist, daß
λx ∈ D.e immer stetig ist. Der Ausdruck muß also in jeder Variable, die in
ihm vorkommt, stetig sein. Wir nennen einen Ausdruck stetig, wenn für jede
Variable x die Abbildung λx ∈ D.e stetig ist.

2Über die Charakterisierung dieser Abbildungen würde man die disjunkte Vereinigung
mit Hilfe der Allgemeinen Algebra definieren.
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Nachfolgend geben wir nun Regeln zur Konstruktion von stetigen Ausdrücken
an.

Variablen Für eine Variable x vom Typ (D,vD) ist x ein stetiger Ausdruck
vom Typ (D,vD).

Konstanten Jedes Element d ∈ D eines semantischen Bereiches (D,vD)
ist ein stetiger Ausdruck vom Typ (D,vD). Insbesondere sind ⊥D, true,
true, 0, 1, . . . stetige Ausdrücke entsprechenden Typs. Aber auch die zuvor
definierten Abbildungen apply, curry und fix sind stetige Ausdrücke.

fix ist eine Konstante des semantischen Bereiches [[D → D] → D], curry ist
eine Konstante des semantischen Bereiches [[(F ×D) → E] → [F → [D →
E]] und apply des semantischen Bereiches [([D → E] ×D) → E, wobei wir
streng genommen die Funktionen noch mit den entsprechenden semantischen
Bereichen D, E und F indizieren müßten.

Hier definieren wir sogar noch eine weitere Funktion, die Fallunterscheidung,
eine Abbildung in drei Argumenten: . ⇒ .|. : [(B⊥ × D × D) → D] wo-
bei (D,vD) ein semantischer Bereich mit kleinstem Element ⊥D ist. Diese
Abbildung ist definiert durch:

b ⇒ e1|e2 =


e1 falls b = btruec
e2 falls b = bfalsec
⊥D falls b =⊥B⊥

Dies ist ein Beispiel für eine nicht-strikte Abbildung. Denn es kann sein,
daß e1 undefiniert ist, die Fallunterscheidung aber trotzdem ein definiertes
Ergebnis (ungleich ⊥B⊥) liefert, nämlich dann, wenn b den Wert false hat.

Tupel Wenn e1, . . . , en stetige Ausdrücke vom Typ D1, . . . , Dn sind, dann
ist (e1, . . . , en) ein stetiger Ausdruck vom Typ D1 × . . .×Dn.

Funktionsanwendung Wenn f eine stetige Abbildung aus dem Bereich
[D → E] ist, und e ein stetiger Ausdruck vom Typ D, dann ist f(e) ein
stetiger Ausdruck vom Typ E.
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λ-Abstraktion Wenn e ein stetiger Ausdruck vom Typ E ist und x eine
Variable vom Typ D, dann ist λx ∈ D.e ein stetiger Ausdruck vom Typ
[D → E].

Mit Hilfe der obigen Konstrukte und Notationen können wir nun stetige
Abbildungen definieren. Wir können sogar rekursive Abbildungen definieren.
Dies zeigen wir anhand des Beispiels der Fakultätsfunktion. Zunächst geben
wir eine pseudoprogrammiersprachliche Formulierung an:

function fac(x: nat) : nat {

if x = 0 then 1

else x * fac(x-1)

Diese Funktion drücken wir nun mit Hilfe unserer Sprache aus. Dazu definie-
ren wir zunächst:

FAC : [N → N⊥] → [N → N⊥]

mit

FAC ≡ λf ∈ [N → N⊥].λx ∈ N.bx = 0c → b1c|bxc ·∗ f(x− 1)

·∗ bezeichnet dabei die Erweiterung des Produkts · von N auf N⊥.

Dann gilt fac ≡ fix(FAC) und fac(n) ≡ apply(fix(FAC), n)).

6 Zusammenfassung

In diesem Kapitel haben wir uns mit Sätzen über die Existenz von Fixpunk-
ten von Abbildungen beschäftigt. Es hat sich herausgestellt, daß sich der
klassische Fixpunktsatz von Knaster und Tarski für unsere Zwecke nicht so
gut eignet, da die zugrundeliegenden Strukturen in der Informatik meist keine
vollständigen Verbände sind (und auch nicht vernünftig in solche eingebettet
werden können).
Deshalb haben wir einen Fixpunktsatz für semantische Bereiche und stetige
Abbildungen betrachtet. Der hat darüber hinaus den Vorteil, daß sich damit
der Fixpunkt einer Abbildung approximieren läßt.
Zuletzt haben wir dann Konstruktionsregeln und eine Sprache betrachtet,
mit der wir immer innerhalb der stetigen Abbildungen und der semantischen
Bereiche bleiben. Das spart uns den Aufwand nachzuweisen, daß die Fix-
punkte existieren und insbesondere die Abbildung fix immer wohldefiniert
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ist. Am Ende haben wir sogar gesehen, daß wir innerhalb dieser Notation
mit Hilfe von fix sogar rekursive Abbildungen definieren können. Mit Hilfe
dieser Sprache kann man dann auch einer funktionalen Programmiersprache
(mit Rekursion eine Semantik zuordnen).

Wir haben hier nur einen kurzen Überblick über diese Konstruktion gegeben;
genauer Informationen findet man unter dem Stichwort typisierter Lambda-
Kalkül.
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Kapitel 7

Axiomatische Semantik

In diesem Kapitel stellen wir die axiomatische Semantik vor. Die axiomati-
sche Semantik definiert nicht das Verhalten eines Programms, sondern defi-
niert seine Eigenschaften. Diese Eigenschaften werden mit Hilfe von Regeln
formuliert. Diese Regeln können umgekehrt auch als Beweisregeln für diese
Eigenschaften aufgefaßt werden.
Damit stellt die axiomatische Semantik den Zusammenhang zur Verifikation
von Programmen her. Deshalb gehen wir hier im Rahmen der Vorlesung
Semantik nur am Rande auf die axiomatische Semantik ein.
Die axiomatische Semantik – genauer die Äquivalenz dieser Semantik zur ope-
rationalen und mathematischen Semantik – hat außerdem sehr tiefgreifende
theoretische Konsequenzen: mit ihrer Hilfe läßt sich der berühmte Unvoll-
ständigkeitssatz von Gödel (bzw. die Nicht-Axiomatisierbarkeit der Arith-
metik) beweisen. Auch darauf können wir hier leider nicht eingehen.

1 Motivation

Wie gesagt definiert die axiomatische Semantik die Eigenschaften eines Pro-
gramms. Dazu müssen wir uns also zunächst überlegen, welche Eigenschaften
eines Programms wir beschreiben wollen. Wir werden uns dabei – ganz klas-
sisch – auf den Zusammenhang zwischen Eingabe und Ausgabe bzw. zwischen
Anfangs- und Endzuständen beschränken. Beispielsweise gilt für das folgende
Programm die folgende Zusicherung :

{x = i ∧ i ≥ 0 ∧ y = 1}
while 1 ≤ x do p y:= y∗x; x:= x − 1 y

105
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{y = i!}

Diese Zusicherung kann man wie folgt lesen: Wenn die Anweisung
while 1 ≤x do py:= y∗x; x:= x − 1 y
in einem Zustand gestartet wird, für den x = i ∧ i ≥ 0 ∧ y = 1 gilt, und das
Programm irgendwann terminiert, dann gilt im Endzustand y = i!.

Wichtig ist, daß die Zusicherung NICHT fordert, daß die Anweisung ter-
miniert, sondern nur etwas über den Endzustand sagt, wenn sie terminiert.
Dies entspricht also gerade der partiellen Korrektheit von Programmen. Es
gibt andere Formen der Zusicherung, die auch verlangen, daß die Anweisung
auch terminiert. Aber die betrachten wir hier nicht.

Dabei sind x und y Programmvariablen, weil sie im Programm vorkommen.
Sie nehmen also jeweils den Wert der entsprechenden Variable im Anfangszu-
stand bzw. im Endzustand an. Die Variable i dagegen kommt im Programm
nicht vor; wir nennen sie eine Logikvariable. Sie kann jeden beliebigen Wert
erhalten, der aber im Anfangs- und Endzustand gleich ist. Auf diese Weise
können wir ausdrücken, daß am Ende die Variable y den Wert von x! des
Anfangsbestands hat. Denn wir wissen aufgrund der Bedingung x = i, daß
i den Wert haben muß, den x am Anfang besitzt. Aufgrund der Bedingung
y = i! wissen wir, daß y am Ende die Fakultät des Wertes der Variable x
vom Anfang hat.
Allgemein besteht eine Zusicherung also aus drei Teilen, der Vorbedingung,
der Anweisung und der Nachbedingung : {A} c {B}, wobei A und B prädika-
tenlogische Formeln sind und c eine Anweisung. In den prädikatenlogischen
Formeln dürfen auch Quantoren vorkommen, wobei wir nur über Logikva-
riablen quantifizieren dürfen. Hier ist ein weiteres Beispiel für eine solche
Zusicherung (wobei b(x) ein beliebiger boolescher Ausdruck ist, in der die
Variable x vorkommt):
{x = 0} while ¬b(x) do x:= x + 1 {b(x) ∧ ∀i.(0 ≤ i ∧ i < x) ⇒ ¬b(i)}.

Nochmal zur Erinnerung: Die Zusicherung sagt nicht, daß das Programm
in jedem Zustand, der die Vorbedingung erfüllt, terminiert. Beispielsweise
terminiert die Anweisung in unserem Beispiel nicht, wenn b nie wahr wird.
Die Zusicherung besagt nur, daß im Endzustand die Nachbedingung gilt, wenn
denn der Endzustand erreicht wird.

Eine interessante Frage ist dann, für welche Anweisungen c die Zusicherung
{true}c{false} gilt? Es gibt tatsächlich Anweisungen, für die diese Zusiche-
rung gilt.
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Die axiomatische Semantik macht nun nichts anderes, als Regeln anzuge-
ben, um derartige Zusicherungen herzuleiten. Natürlich sollten diese Regeln
so geartet sein, daß alle Zusicherungen, die wir mit den Regeln herleiten
können, auch im oben angedeuteten intuitiven Sinne gelten. Das nennt man
die Korrektheit der Regeln. Umgekehrt sollten auch alle Zusicherungen, die
intuitiv gelten, mit Hilfe der Regeln hergeleitet werden können. Das nennt
man die Vollständigkeit der Regeln. Damit wir diese Begriffe formalisieren
können, werden wir zunächst die Gültigkeit einer Zusicherung auf eine forma-
le Grundlage stellen. Wir werden dies mit Hilfe der operationalen Semantik
tun.

2 Grundlagen der Prädikatenlogik

Bevor wir die Gültigkeit von Zusicherungen formulieren können, wiederholen
wir einige wichtige Begriffe aus der Prädikatenlogik und führen einige No-
tationen ein, die wir später zur Definition der Gültigkeit von Zusicherungen
benötigen.

2.1 Logikvariablen, Ausdrücke und Formeln

In den Beispielen haben wir gesehen, wie wir prädikatenlogische Formeln
aufbauen können. Neben den Programmvariablen V dürfen in prädikatenlo-
gischen Ausdrücken auch logische Variablen vorkommen. Für solche Varia-
blen definieren wir eine neue syntaktische Menge L, für deren Elemente wir
die Bezeichnungen i, i1, i2 und i′ und i′′ reservieren. Wir gehen im folgenden
davon aus, daß die Logikvariablen und die Programmvariablen disjunkt sind
(d. h. V ∩ L = ∅).
Aus diesen bauen wir dann die arithmetischen Ausdrücke Aexpl mit logischen
Variablen auf, wie wir das auch schon bei den arithmetischen Ausdrücken in
Anweisungen formalisiert haben. Aus diesen können wir dann die prädika-
tenlogischen Formeln Form aufbauen:

Aexpl: a ::= n | v | i | a0 + a1 | a0 − a1 | a0 ∗ a1

Form: F ::= t | a0 = a1 | a0 ≤ a1 | ¬F0 |F0 ∧ F1 |F0 ∨ F1 | ∀i.F | ∃i.F
In unseren Beispielen werden wir auch weitere boolesche Operatoren (ins-
besondere die Implikation) und arithmetische Operatoren zulassen (wie Bei-
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spielsweise die Fakultätsfunktion).

2.2 Belegungen und Auswertung von Ausdrücken

Eine Abbildung β : L → Z nennen wir eine Belegung der Logikvariablen.
In einem gegebenen Zustand σ und für eine gegebene Belegung β können
wir nun Ausdrücke mit Logikvariablen auswerten. Wir schreiben dafür in
Anlehnung an die entsprechende Notation der mathematischen Semantik für
Ausdrücke: AJaK(β, σ).

Die Definition der Auswertungsfunktion ist eine einfache Übungsaufgabe.
Der Vollständigkeit halber geben wir sie hier trotzdem an:

• AJnK(β, σ) = n

• AJvK(β, σ) = σ(v)

• AJiK(β, σ) = β(i)

• AJa0 + a1K(β, σ) = AJa0K(β, σ) +AJa1K(β, σ)

• AJa0 − a1K(β, σ) = AJa0K(β, σ)−AJa1K(β, σ)

• AJa0 ∗ a1K(β, σ) = AJa0K(β, σ) · AJa1K(β, σ)

Man kann auch leicht zeigen, daß für a ∈ Aexp gilt AJcK(β, σ) = AJcK(σ).

2.3 Gültigkeit einer prädikatenlogischen Aussage

Für einen gegebenen Zustand σ und eine gegebene Belegung β definieren,
ob eine prädikatenlogische Formel gilt. Wenn eine Formel F in β und σ gilt,
schreiben wir β, σ |= F .

Auch die Gültigkeitsbeziehung können wir einfach induktiv über den Aufbau
der Formel definieren:

• β, σ |= t gilt genau dann, wenn t ≡ true gilt.

• β, σ |= a0 = a1 gilt genau dann, wenn AJa0K(β, σ) = AJa1K(β, σ) gilt.

• β, σ |= a0 ≤ a1 gilt genau dann, wenn AJa0K(β, σ) ≤ AJa1K(β, σ) gilt.

• β, σ |= F0 ∧ F1 gilt genau dann, wenn β, σ |= F0 und β, σ |= F1 gilt.

• β, σ |= F0 ∨ F1 gilt genau dann, wenn β, σ |= F0 oder β, σ |= F1 gilt.

• β, σ |= ¬F0 gilt genau dann, wenn nicht β, σ |= F0 gilt.

• β, σ |= ∀i.F0 gilt genau dann, wenn für alle Belegungen β′ mit β′(i′) =
β(i′) für alle i′ 6≡ i auch β′, σ |= F0 gilt.
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• β, σ |= ∃i.F0 gilt genau dann, wenn für eine Belegungen β′ mit β′(i′) =
β(i′) für alle i′ 6≡ i auch β′, σ |= F0 gilt.

Eine prädikatenlogische Formel F heißt allgemeingültig, wenn für alle Be-
legungen β und alle Zustände σ gilt: β, σ |= F . Wir schreiben dann auch
|= F .

2.4 Substitution

Zuletzt definieren wir die Substitution einer Programmvariablen in einer For-
mel. Für eine Programmvariable v ∈ V, einen Ausdruck a ∈ Aexp (ohne
Logikvariablen) und eine Formel F bezeichnet F [a/v] diejenige Formel, in
der jedes Vorkommen der Variablen v durch den Ausdruck a ersetzt wird.
Dies nennen wir eine Substitution.

Der Vollständigkeit halber geben wir hier eine induktive Definition für die
Substitution an:

• n[a/v] ≡ n.

• v′[a/v] ≡ v falls v 6≡ v′ und v′[a/v] ≡ a falls v ≡ v′.

• i[a/v] ≡ i.

• (a0 + a1)[a/v] ≡ (a0[a/v] + a1[a/v]).

• (a0 − a1)[a/v] ≡ (a0[a/v]− a1[a/v]).

• (a0 ∗ a1)[a/v] ≡ (a0[a/v] ∗ a1[a/v]).

• t[a/v] ≡ t.

• (a0 = a1)[a/v] ≡ (a0[a/v] = a1[a/v]).

• (a0 ≤ a1)[a/v] ≡ (a0[a/v] ≤ a1[a/v]).

• (F0 ∧ F1)[a/v] ≡ (F0[a/v] ∧ F1[a/v]).

• (F0 ∨ F1)[a/v] ≡ (F0[a/v] ∨ F1[a/v]).

• (¬F )[a/v] ≡ ¬(F [a/v]).

• (∀i.F )[a/v] ≡ ∀i.(F [a/v]).

• (∃i.F )[a/v] ≡ ∃i.(F [a/v]).

In der Definition der Substitution haben wir ganz bewußt darauf verzichtet,
Ausdrücke mit Logikvariablen für eine Variable einzusetzen. Es dürfen nur
arithmetische Ausdrücke substituiert werden. Denn sonst hätten wir darauf
achten müssen, daß Logikvariablen nicht unter die Bindung eines Quantors
geraten. Dies hätte zu einer unnötig komplizierten Definition geführt, die uns
hier keinen weiteren Nutzen gebracht hätte.
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Die Notation für die Substitution erinnert bewußt an die Zustandsmodifi-
kation. Es gibt aber einen wichtigen Unterschied: Die Substitution operiert
syntaktisch auf einer Formel, also einem syntaktischen Objekt. Die Zustands-
modifikation operiert auf einem Zustand, also einem semantischen Objekt.
Es besteht aber trotzdem ein enger Zusammenhang zwischen den beiden
Konzepten: das Substitutionslemma.

Lemma 7.1 (Substitutionslemma)
Sei F ∈ Form eine Formel, v ∈ V eine Programmvariable, a ∈ Aexp ein
Ausdruck, β eine Belegung und σ ein Zustand. Dann gilt β, σ |= F [a/v]
genau dann, wenn β, σ[σ(a)/v] |= F gilt.

Beweis: Das Substitutionslemma läßt sich leicht durch Induktion über den
Aufbau der Ausdrücke und Formeln beweisen. �

3 Zusicherungen

Mit diesen Begriffen und der operationalen Semantik können wir nun den
Begriff der Zusicherung und unsere informelle Beschreibung ihrer Gültigkeit
formalisieren.

Definition 7.2 (Zusicherung)
Für zwei prädikatenlogische Formeln A und B und eine Anweisung c nennen
wir {A} c {B} eine Zusicherung.
Die Zusicherung heißt gültig, wenn für jede Belegungen β und jeden Zustand
σ mit β, σ |= A und jeden Zustand σ′ mit σ′ mit 〈c, σ〉 → σ′ auch gilt
β, σ′ |= B. Für eine gültige Zusicherung schreiben wir auch |= {A} c {B}.

Der Wert der logischen Variablen ändert sich bei den beiden Interpretationen
von A und B nicht (β bleibt gleich); der Wert der Programmvariablen ändert
sich dagegen (die Gültigkeit von A wird bzgl. σ überprüft, die Gültigkeit von
B bezüglich σ′).

Wir geben nun Beweisregeln an, mit deren Hilfe man die Gültigkeit von Zusi-
cherungen beweisen kann. Am Ende werden wir feststellen, daß wir mit diesen
Regel genau diejenigen Zusicherungen herleiten können, die auch gültig sind.
Da wir das aber a priori nicht wissen benutzen wir für die durch Regeln
herleitbaren Zusicherungen ein anderes Symbol ` {A} c {B}. Diese Regel
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werden Zusicherungslogik oder oft auch Hoare-Kalkül genannt, da die Regel
auf C.A.R. Hoare zurück gehen [7].

Definition 7.3 (Zusicherungslogik (Hoare-Kalkül))
Die Zusicherungslogik besteht aus den folgenden Regeln:

{A} skip {A}

{A[a/v]} v:=a {A}
{A} c0 {C} {C} c1 {B}

{A} c0 ;c1 {B}
{A ∧ b} c0 {B} {C ∧ ¬b} c1 {B}
{A} if b then c0 else c1 {B}

{A ∧ b} c {A}
{A}while b do c {A ∧ ¬b}

|= A ⇒ A′ {A′} c {B′} |= B′ ⇒ B
{A} c {B}

Wenn eine Zusicherung {A} c {B} mit diesen Regeln herleitbar ist, schreiben
wir ` {A} c {B}.

In der Zusicherungslogik gibt es für jedes Konstrukt unserer Programmier-
sprache IMP eine Regel. Dazu kommt noch eine weitere Regel, die es er-
laubt die Zusicherungen für eine Anweisung zu verändern. Sie heißt Ab-
schwächungsregel. weil eine bereits bewiesene Zusicherung damit abgeschwächt
werden kann. Die Regeln für die einzelnen Konstrukte unserer Program-
miersprache stellen gewissermaßen die Bausteine für Beweise dar; die Ab-
schwächungsregel stellt den Mörtel dar, der es erlaubt, die Bausteine zusam-
menzukleben und gewisse Anpassungen vorzunehmen (vgl. Bsp.).
Die Regeln für die meisten Anweisungen sind unmittelbar einsichtig. Die ein-
zige Anweisung, zu der man etwas sagen sollte, ist die Regel für die Zuwei-
sung. Zunächst wundert man sich sicher, warum die Regel

”
rückwärts“ formu-

liert ist und nicht vorwärts. Diese Regel wird deshalb oft auch Rückwärtsregel
genannt. Man kann sich aber leicht klar machen, daß die naive Vorwärtsregel

{true} v:=a {v = a}
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falsch ist. Dazu muß man sich nur die Zuweisung x:= x+1 ansehen. Eine
korrekte (und hinreichend ausdrucksmächtige)

”
Vorwärtsregel“ wäre kom-

plizierter. Außerdem ist die Rückwärtsregel viel natürlicher – wenn man sich
erstmal an diesen Gedanken gewöhnt hat. Beim praktischen Beweisen führt
die Rückwärtsregel dazu, daß man Beweise von hinten nach vorne konstru-
iert. Das ist dann aber schon Gegenstand einer Verifikationsvorlesung.

Die zweite Regel, die einer Erläuterung bedarf, ist die Abschwächungsregel.
In dieser Regel kommen nämlich Voraussetzungen vor, die gar nicht inner-
halb der Zusicherungslogik ableitbar sind, nämlich die Implikationen A ⇒ A′

und B′ ⇒ B. Diese müssen mit den klassischen Regeln der Logik bewiesen
werden. Dies deuten wir dadurch an, daß wir das Symbol |= davor setzen;
das bedeutet, daß die Implikationen allgemeingültig sein müssen. Regeln zum
Beweis geben wir dafür aber nicht an1.

Auch wenn Programmverifikation nicht unser Thema ist, wollen wir wenig-
stens ein Programm mit Hilfe des Hoare-Kalküls beweisen.

Beispiel 7.1 (Fakultätsfunktion)
Wir beweisen die folgende Zusicherung (vgl. Abschnitt 1):

{x = i ∧ i ≥ 0 ∧ y = 1}
while 1 ≤x do py:= y∗x; x:= x − 1 y

{y = i!}

Den Beweis formulieren wir allerdings nicht in Form eines Herleitungsbau-
mes, sondern, indem wir die Zusicherungen direkt in die Anweisung hinein
schreiben. Der Herleitungsbaum läßt sich daraus jedoch relativ einfach ge-

1Tatsächlich ist es unmöglich einen vollständigen Satz von Regeln zum Beweis aller
allgemeingültigen Aussagen anzugeben. Das ist eine Konsequenz des Unvollständigkeits-
satzes von Gödel. Weil wir uns um diese Problematik hier nicht kümmern wollen, geben
wir diese Voraussetzung hier semantisch an.
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winnen.
1 : {x = i ∧ i ≥ 0 ∧ y = 1}
2 : {y ∗ x! = i! ∧ 0 ≤ x}
3 : while 1 ≤x do
4 : {y ∗ x! = i! ∧ 0 ≤ x ∧ 1 ≤ x}
5 : {(y ∗ x) ∗ (x− 1)! = i! ∧ 0 ≤ (x− 1)}
6 : y:= y ∗ x;
7 : {y ∗ (x− 1)! = i! ∧ 0 ≤ (x− 1)}
8 : x:= x − 1;
9 : {y ∗ x! = i! ∧ 0 ≤ x}
10 : {y ∗ x! = i! ∧ 0 ≤ x ∧ ¬1 ≤ x}
11 : {y ∗ x! = i! ∧ x = 0}
12 : {y = i!}

Die Frage ist, wie kommt man auf einen derartigen Beweis und wie entwickelt
man ihn. Die wichtigste Aufgabe dabei ist es eine Schleifeninvariante zu ent-
decken. In unserem Beispiel ist das die Aussage y ∗ x! = i! ∧ 0 ≤ x, denn
die bleibt bei jedem Schleifendurchlauf gültig, wenn sie vorher gilt. Diese
schreiben wir also zunächst in das Programm hinein (Zeile 9). Ausgehend
von Zeile 9 können wir dann durch zweimalige Anwendung der Rückwärts-
regel die Zeilen 7 und 5 ergänzen; Zeile 5 können wir durch Anwendung der
Abschwächungsregel zu Zeile 4 modifizieren. Mit Zeilen 4 und 9 können wir
dann die Schleifenregel mit A ≡ y∗x! = i!∧0 ≤ x anwenden und wir erhalten
die Zeilen 2 und 10. Die Schleifenregel entspricht also exakt der Anwendung
der Schleifeninvariante! Zuletzt wenden wir die Abschwächungsregel an und
erhalten die Zeilen 1 und 11. Eine weitere Abschwächung (die wir nur aus di-
daktischen Gründen nicht sofort im ersten Schritt durchgeführt haben) liefert
uns Zeile 12. Der Beweis ist also fertig.
Diesen Beweis könnten wir nun in einen Herleitungsbaum umwandeln, was
aber relativ langweilig ist.

4 Korrektheit und Vollständigkeit

Die Regeln der Zusicherungslogik können wir einerseits als eine weitere Se-
mantik für Anweisungen auffassen, die axiomatische Semantik für Anwei-
sungen. Andererseits können wir sie als Beweiskalkül für die Gültigkeit von
Zusicherungen auffassen. Im ersten Fall sollten wir tunlichst beweisen, daß
die axiomatische Semantik äquivalent zur operationalen oder zur mathema-
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tischen Semantik ist. Im zweiten Fall sollten wir nachweisen, daß der Beweis-
kalkül korrekt und vollständig ist. Im Endeffekt ist das aber nur eine Frage
der Sichtweise, denn die Gültigkeit einer Zusicherung wurde ja bereits mit
Hilfe der operationalen Semantik definiert. Die Arbeit bleibt ist also dieselbe.

Zunächst beschäftigen wir uns mit der Korrektheit der Zusicherungslogik.
Korrektheit bedeutet, daß jede Zusicherung, die wir mit Hilfe der Regeln
herleiten können, auch gilt. Kurz können wir dies wie folgt formulieren:

` {A} c {B} ⇒ |= {A} c {B}

Satz 7.4 (Korrektheit der Zusicherungslogik)
Für jede Zusicherung {A} c {B} mit ` {A} c {B} gilt auch |= {A} c {B}.

Beweis: Diese Aussage läßt sich durch Induktion über die Regeln der Zusi-
cherungslogik unter Anwendung der Definition der Gültigkeit und der ope-
rationalen Semantik einfach beweisen. Der interessanteste Fall ist der Beweis
der Rückwärtsregel; es stellt sich nämlich heraus, daß diese Regel exakt dem
Substitutionslemma (Lemma 7.1) entspricht. Die Durchführung des Beweises
ist eine relativ einfache Übungsaufgabe. �

Nun wissen wir also, daß alles, was wir mit der Zusicherungslogik beweisen
können, auch wirklich stimmt. Das sollte niemanden wirklich überraschen.
Die viel spannendere Frage ist, ob wir auch alle gültigen Zusicherungen be-
weisen können (wenn wir uns nicht zu blöd anstellen). Wenn wir wirklich alles
beweisen können, was gilt, dann heißt der Kalkül vollständig. Kurz können
wir die Vollständigkeit wie folgt formulieren:

|= {A} c {B} ⇒ ` {A} c {B}

Die Vollständigkeit ist also genau die umgekehrte Richtung der Implikation
für die Korrektheit.

Satz 7.5 (Vollständigkeit der Zusicherungslogik)
Für jede Zusicherung {A} c {B} mit |= {A} c {B} gilt auch ` {A} c {B}.

Beweis: Diese Aussage können wir im Rahmen dieser Vorlesung nicht bewei-
sen. Der Beweis ist sehr aufwendig. Ein Indiz dafür ist, daß aus dem Beweis
dieses Satzes der Unvollständigkeitssatz von Gödel als einfache Folgerung
abfällt (darauf gehen wir hier aber nicht näher ein). Im Skript zur 4-stündi-
gen Vorlesung aus dem WS 2002/03 ist der Beweis jedoch enthalten; auch
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im Buch von Winskel [11] ist er zu finden. �

Der obige Vollständigkeitssatz ist jedoch noch mit großer Vorsicht zu ge-
nießen. Denn in den Regel der Zusicherungslogik haben wir ja nur den An-
teil, der über Zusicherungen redet, durch syntaktische Regeln beschrieben.
Für die Allgemeingültigkeit der Implikationen in der Abschwächungsregel
haben wir keine syntaktischen Regeln formuliert – die Verantwortung dafür
haben wir an die Logiker abgegeben. Die Zusicherungslogik ist also nicht
effektiv. Die Frage ist nun, ob wir einen Satz von syntaktischen Regeln
angeben können, mit dem alle allgemeingültigen Implikationen hergeleitet
werden können. Man kann zeigen (zum Beispiel mit Hilfe unseres obigen
Vollständigkeitssatzes), daß es einen solchen Satz von Regel NICHT geben
kann! Deshalb nennt man die Vollständigkeit, die wir im obigen Satz formu-
liert haben, auch relative Vollständigkeit. Die Zusicherungslogik ist nur rela-
tiv zur Allgemeingültigkeit der Implikationen vollständig. Mehr können wir
aus prinzipiellen Gründen nicht erreichen. In der so harmlos erscheinenden
Abschwächungsregel steckt also eine enorme

”
Power“. Über diese Problema-

tik könnte man aber eine eigenständige Vorlesung halten, so daß wir uns hier
mit diesen Andeutungen begnügen müssen.

5 Zusammenfassung

In diesem Kapitel haben wir eine ganz andere Art der Semantik kennen ge-
lernt. Die Semantik einer Anweisung ist nicht unmittelbar durch ihr Verhal-
ten definiert, sondern durch die Eigenschaften die für die Anweisung gelten.
Tatsächlich ist es Ansichtssache, ob es ich bei der axiomatischen Semantik
um eine Semantik handelt oder einen (auf der operationalen oder mathe-
matischen Semantik aufbauende) Beweistechnik. In jedem Falle stellt die
axiomatische Semantik den Zusammenhang zur Programmverifikation her.
Der Nachweis der Korrektheit und Vollständigkeit der Verifikationsregeln
entspricht dann gerade dem Nachweis der Äquivalenz der axiomatischen Se-
mantik zur operationalen bzw. zur mathematischen Semantik.
Aus der Sicht der Programmverifikation sind die Regeln der axiomatischen
Semantik allerdings erst der Anfang. Auf die eigentlichen Aspekte der Pro-
grammverifikation konnten wir hier leider nicht eingehen. Die Regeln der
axiomatischen Semantik bilden jedoch den Kern fast aller Verifikationsansätze.
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Kapitel 8

Zusammenfassung

In dieser Vorlesung haben wir uns mit den Techniken zur Definition von Se-
mantiken und zur Argumentation über ihre Eigenschaften, insbesondere zum
Nachweis der Äquivalenz zu anderen Semantiken beschäftigt. Eine zentrale
Rolle spielten dabei induktive Definitionen und induktive Beweise und die
semantischen Bereiche und Fixpunkte. Im Laufe der Vorlesung sollte deut-
lich geworden sein, daß induktive Definitionen und Fixpunkte weniger weit
auseinander liegen als man zunächst erwarten würde. Eigentlich sind es nur
zwei verschiedene Sichtweisen von ein und demselben Sachverhalt.

Obwohl also die mathematische Semantik und die operationale Semantik –
wenn man genau hinguckt – weniger unterschiedlich sind als erwartet, gibt es
doch einen wichtigen Unterschied in der Formulierung. Denn wir haben gese-
hen, daß die operationale Semantik nicht kompositional definiert ist, während
die mathematische Semantik kompositional definiert ist. Genau um die Kom-
positionalität zu erreichen, haben wir bei der Definition der mathematischen
Semantik Fixpunkte explizit benutzt und später die Fixpunkttheorie ganz
allgemein eingeführt. Dabei sind Fixpunkte nichts Esotherisches. Sie ergeben
sich ganz natürlich aus der Selbstbezüglichkeit der zugrundeliegenden Kon-
zepte. Die Fixpunkttheorie erlaubt es uns, diese Selbstbezüglichkeit mathe-
matisch sauber und präzise aufzulösen, und damit zu einer kompositionalen
Semantik zu gelangen. Wie wir gesehen haben wird die Fixpunkttheorie im-
plizit (in Form der induktiven Definiton) zwar auch bei der Definition der
operationalen Semantik eingesetzt. Allerdings wird dort die Selbstbezüglich-
keit mehr unter den Teppich gekehrt als wirklich gelöst. Dementsprechend
ist die operationale Semantik nicht kompositional.

117



118 KAPITEL 8. ZUSAMMENFASSUNG

Ein weiteres Anliegen der Vorlesung ware ganz allgemein die mathematische
Formulierung von von Konzepten und der Beweis von Aussagen über diese
Konzepte. Im Rahmen der Vorlesung und der Übung haben wir verschiedene
Beweistechniken eingeübt, die auch in ganz anderen Bereichen der Informatik
genutzt werden können. Denn wer genau hinsieht, wird feststellen, daß es in
der Informatik nur so von induktiven Definitionen und Beweisen und auf der
Rückseite der Medaille nur so von Fixpunkten wimmelt – wenn auch oft nur
unter der Oberfläche.
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vollständiger Verband, siehe Ver-
band

Voraussetzung
einer Regel, 49

Voraussetzung einer Regel, 29
Vorbedingung, 106

Wahrheitswerte, 14
Wert einer Variablen, 28
wohlgegründet, siehe Ordnung

Zusicherung, 8, 105, 110
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