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Vorwort

Dieses Skript ist im Rahmen der gleichnamige Vorlesung entstanden, die
ich im WS 2003/04 an der Universitit Paderborn gehalten habe. Ahnliche
Vorlesungen — allerdings mit etwas anderen Schwerpunkten — habe ich bereits
frither an verschiedenen Universitéiten gehalten. Eine der Grundlagen dieser
fritheren Vorlesungen war das Buch von Glynn Winskel [T1]. Die Vorlesung im
WS 2003/04 habe ich zwar vollkommen neu iiberarbeitet und teilweise auch
anders aufgebaut. Aber ihr Ursprung im Buch von Glynn Winskel [11] ist
noch deutlich sichtbar. Dariiber hinaus habe ich natiirlich anderes Material
benutzt, von dem ich besonders das Buch von Eike Best [2] hervorheben
mochte.

Dieser Text ist allerdings noch weit davon entfernt, ein vollstdindiges Buch
zum Thema ,,Semantik* zu sein. Es ist an vielen Stellen noch unvollstindig
und enthélt wahrscheinlich noch eine Menge Fehler. Viele interessante Be-
merkungen und Querbeziige zu anderen Bereichen der Informatik (z. B. der
Logik, der Programmverifikation, der Algebraischen Spezifikation) sind nur
durch kurze Randbemerkungen angedeutet. Als Begleitmaterial zur Vorle-
sung ist es aber sicher schon recht hilfreich. Im Rahmen zukiinftiger Vorlesun-
gen werde ich dieses Skript weiter iiberarbeiten und langsam vervollstéindigen
und Fehler beseitigen. Ubungsaufgaben zu der Vorlesung und teilweise auch
Musterlosungen sind iiber das WWW verfiigbar.

Auch wenn dieses Skript sicher noch fehlerhaft ist, so enthélt es schon deutlich
weniger Fehler als im ersten Entwurf. Dies habe ich den Studierenden aus
der Vorlesung zu verdanken, die mich auf Fehler hingewiesen haben. Auch
Florian Klein hat sich eine Vorversion dieses Skriptes angesehen und mich auf
diverse Fehler hingewiesen. Dafiir mochte ich mich an dieser Stelle bedanken.

Paderborn, im Februar 2004,
Ekkart Kindler
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Vorwort zur iiberarbeiteten Fassung

Im WS 2004/05 werde ich das Skript nochmals iiberarbeiten und dabei wei-
tere Fehler und Unklarheiten beseitigen. Spezieller Dank geht an Matthias
Tichy, der mich mit seinem annotierten Skript auf einige Fehler und Unklar-
heiten hingewiesen hat.

Paderborn, im WS 2004/05,
Ekkart Kindler
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Teil A

Vorlesung






Kapitel 1

Einfiihrung

1 Der Begriff Semantik

Unter Semantik versteht man urspriinglich ,,die Lehre von der Bedeutung
sprachlicher Zeichen“ [4] und Zeichenfolgen, und damit ein Teilgebiet der
Linguistik. Oft versteht man unter Semantik auch die Bedeutung eines Wor-
tes oder eines Satzes. In der Informatik versteht man unter Semantik ins-
besondere die Bedeutung eines Programms. In der Informatik versteht man
dementsprechend unter Semantik die Lehre und Wissenschaft von der Be-
deutung von Programmen oder allgemein der Bedeutung von syntaktischen
Konstrukten der Informatik. Sie beschéftigt sich mit Techniken, die es erlau-
ben, einem Programm oder einem syntaktischen Konstrukt einer bestimmten
Sprache eine Bedeutung zuzuordnen.

Im Sprachgebrauch der Informatik versteht man unter ,,Semantik® je nach
Kontext verschiedene Dinge:

Semantik eines Programms: Eine einem konkreten Programm zugeord-
nete Bedeutung.

Semantik einer Programmiersprache: Eine Abbildung jedes syntaktisch
korrekten Programms einer konkreten Programmiersprache auf dessen
Bedeutung.

Semantik von Programmiersprachen: Die Techniken die man zur De-
finition der Semantik verschiedenartiger Programmiersprachen heran-
ziehen kann; also das Teilgebiet der Informatik.
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Die Vorlesung beschéftigt sich — wie der ausfiihrliche Name zeigt — mit dem
letzten Verstindnis des Begriffs Semantik. Als Beispiele werden wir aber
immer wieder die Semantik konkreter Programme und konkreter Program-
miersprachenl| betrachten. Nachfolgend betrachten wir diese unterschiedli-
chen Bedeutungen des Begriffs Semantik noch etwas ausfiihrlicher anhand
von Beispielen.

1.1 Semantik eines Programms

Wir betrachten dazu ein konkretes Programmf|in einer pseudoprogrammier-
sprachlichen Notation.

Beispiel 1.1 (Die Fakultitsfunktion)
Wir betrachten das folgende Programm:

function fac(x:nat):nat
if x = 0 then 1
else x x fac(x—1)

Auch, wenn jeder Informatiker sofort sieht, dafl dieses Programm die Fa-
kultatsfunktion berechnet, handelt es sich zunécht nur um reine Syntax. Die
Semantik dieses Programms formulieren wir in Mathematik:

f:N—=N

n— nl

Man schreibt dann oft auch [fac] = f um auszudriicken, da dem Programm
fac die Semantik f zugeordnet wird.

In diesem Beispiel erscheint die Angabe einer Semantik noch reichlich iiber-
flissig zu sein. Im Laufe der Vorlesung werden wir aber noch einige Fein-
heiten kennen lernen, die erst bei einer genauen Formulierung der Semantik
erkennbar werden. Ein Beispiel fiir solche Feinheiten folgt sofort.

Beispiel 1.2 (Eine Funktion héherer Ordnung)
Wir betrachten eine Funktion, die eine Funktion als Parameter besitzt:

I'Meist sind dies sehr einfache Programmiersprachen, um uns nicht in den Details prak-
tischer Programmiersprachen zu verlieren, sondern um uns auf die Techniken der Semantik
zu konzentrieren.

2Der Einfachheit halber betrachten wir hier sogar nur eine Funktionsdeklaration.
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function G( H: function(int ):int, x:int):int

H(x) — H(x)

Offensichtlich ist die Semantik dieses Programms eine Abbildung, die als
Parameter eine partielle Abbildung A und eine Zahl n als Argumente nimmt
und als Ergebnis h(n)—h(n) ausgibt. Das Ergebnis ist immer 0. Die Semantik
dieses Programms kénnen wir also wie folgt formulieren:

g (Z—~27Z)x7Z)—~1Z
(h,n) —0

Dabei steht — fiir eine (potentiell) partielle Abbildung, d. h. fiir eine Abbil-
dung, die nicht (unbedingt) auf allen Argumenten definiert ist. Wir schreiben
wieder [G] = g.

Diese Semantik ¢ liefert fiir jedes Argument das Ergebnis 0. Die Frage ist
nun, ob wir das bei diesem Programm auch wirklich so erwarten wiirden.
Angenommen G bekommt eine Abbildung h und einen Wert n als Argu-
mente, fiir die hA(n) nicht definiert ist, d.h. daf§ die Auswertung von h fiir
Argument n nicht terminiert. Dann wiirde der Ausdruck H(x)—H(x) bei ei-
ner operationalen Auswertung nicht terminieren — also kein Resultat liefern.
Fiir solche Argumente entspricht die obige Semantik also nicht ganz unserer
Erwartung. Wir sollten g dementsprechend etwas anders definieren:

0 falls h(n) definiert ist

undef sonst

(o) {

1.2 Semantik einer Programmiersprache

Im vorangegangen Abschnitt haben wir die Semantik eines bzw. zweier Pro-
gramme kennen gelernt. Wenn wir die Semantik einer Programmiersprache
definieren, legen wir damit eine (totale) Abbildung fest, die jedem syntaktisch
korrekten Programm einer bestimmten Programmiersprache seine Semantik
zuordnet. Es geht also um die Abbildung von ,,Syntax“ auf ,,Semantik®.
Die Notation fiir diese Abbildung haben wir bereits im vorangegangenen
Abschnitt eingefithrt: Die Semantikklammern [.]. Letztendlich verbirgt sich
dahinter genau eine Abbildung, die jedem Programm P (Syntax) einer Pro-
grammiersprache ein semantisches Objekt zuordnet (Semantik). Wie die se-
mantischen Objekte aussehen und wie man eine solche Abbildung prézise
definieren kann, ist Gegenstand dieser Vorlesung.
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... Hier fehlt noch eine Graphik, die die Abbildung verdeutlicht.

Die Zuordnung einer Semantik zu einem Programm entspricht genau der Zu-
ordnung zwischen der Reprdsentation einer Information und der Information
selbst: die Interpretation.

1.3 Semantik von Programmiersprachen

Unter Semantik von Programmiersprachen versteht man die Summe aller
Techniken zum Definieren von Semantiken konkreter Programmiersprachen
und zum Argumentieren iiber diese Semantiken. Dabei werden verschiedene
Konzepte — insbesondere die Induktion und die Fixpunkttheorie — implizit
oder explizit immer wieder benutzt. Diese Konzepte werden wir im Laufe der
Vorlesung identifizieren, formalisieren und Zusammenhénge zwischen ihnen
herstellen.

2 Ansitze

Es gibt verschiedene Ansétze, wie man einem Programm eine Semantik zu-
ordnen kann. In diesem einfithrenden Kapitel verschaffen wir uns zunéchst
einen Uberblick {iber diese verschiedenen Ansitze.

2.1 Operationale Semantik

Zunachts betrachten wir die operationale Semantik fiir eine einfache impera-
tive Sprache. Die operationale Semantik wird iiber das schrittweise Verhalten
des betrachteten Programms definiert. Wir machen uns das anhand eines ein-
fachem Beispielprogrammes deutlich:

Beispiel 1.3 (Eine Schleife)
Wir betrachten das folgende Programm ¢

¢ = while x > 0 do x;:= x—1 od

und einen Startzustand o = [x/2] (in diesem Zustand hat die Variable x den
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Wert 2). Nun arbeiten wir das Programm schrittweise ab:

(c,[z/2]) = (x:=x—1;c,[x/2]) —
c,[z/1]) —
x:=x—1;¢,[z/1]) —

¢, [x/0]) —
skip, [z/0]) />

Wir beginnen dabei mit der Abarbeitung des Programms c im Zustand [z/2].
Zunéchst wird die Schleifenbedingung x > 0 ausgewertet. Im betrachteten
Zustand ist diese Bedingung wahr. Dementsprechend mufl der Schleifenrumpf
x:= X — 1 einmal ausgefiihrt werden und danach die Schleife ¢ erneut aus-
gefithrt werden. Deshalb fahren wir im néchsten Schritt mit der Abarbeitung
des Programms x:= x — 1; c¢ fort; da die Auswertung der Bedingung den Zu-
stand nicht veréndert, setzten wir die Berechnung im gleichen Zustand fort.
Nun ist x:= x — 1 die erste Anweisung; die Abarbeitung fiihrt zum Zustand
[z/1]. Danach miissen wir nur noch die Anweisung c ausfiithren, also die
Schleife von vorne ausfithren. Nach zwei weiteren Schritten miissen wir dann
die Schleife im Zustand [z /0] ausfiithren. Dazu wird wieder die Schleifenbedin-
gung ausgewertet, was in diesem Zustand das Ergebnis falsch liefert. Deshalb
wird die Schleife beendet und mit der Abarbeitung des Programmes nach der
Schleife fortgefahren. Da dort nichts steht, schreiben wir skip fiir das leere
Programm, fiir das natiirlich keine weiteren Schritte mehr ausgefiihrt werden
konnen. Ingesamt endet das Programm also im Zustand [z/0], wenn es im
Zustand [z /2] gestartet wird.

o~ o~~~

Die einzelnen Ubergéinge miissen natiirlich fiir alle Konstrukte der Program-
miersprache definiert werden. Wie dies geht, werden wir spéter sehen. Das
wichtige bei der operationalen Semantik ist, dafl wir ein gegebenes Programm
c ausgehend von einem Anfangszustand o schrittweise ,,simulieren® bzw. ,in-
terpretieren® und — wenn das Programm terminiert — irgendwann das Ergeb-
nis erhalten.

2.2 Mathematische (denonationale) Semantik

Ein Problem bei der Definition der operationalen Semantik ist, dafl wir streng
genommen nicht dem Programm eine Semantik zuordnen, sondern immer
nur einem Programm in einem Zustand. Schoner und eleganter wére es, dem
Programm insgesamt eine Semantik zuzuordnen. Wenn man das ordentlich
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machen will, benotigt man etwas mathematisches Handwerkszeug, was wir
uns erst im Laufe der Vorlesung erarbeiten werden. Deshalb geben wir hier
nur das Endergebnis fiir das Beispiel an. Da das Programm nur eine
Variable besitzt, kénnen wir den Zustand des Programms als eine ganze
Zahl (den Wert der Variablen z) darstellen. Die mathematische Semantik
des Programms ist eine partielle Abbildung, die jedem Anfangszustand den
zugehorigen Endzustand des Programms zuordnet, wenn das Programm ter-
miniert; ansonsten ist die Funktion fiir den Anfangszustand undefiniert (in
unserem Beispiel terminiert das Programm aber immer). Die mathematische
Semantik konnen wir also wie folgt definieren:

[ :Z—Z

{ 0 firn>0
n +—
n  sonst

Nun haben wir zwei Semantiken fiir das Programm c definiert: die operatio-
nale und die mathematische Semantik. Natiirlich sollten diese beiden Seman-
tiken etwas miteinander zu tun haben. Tatsdchlich sind die Techniken zum
Formulieren und Beweisen von Beziehungen zwischen verschiedenen Seman-
tiken auch Gegenstand des Gebietes Semantik und der Vorlesung. Fiir die
beiden Semantiken unserer Programmiersprache sollte fiir alle Programme ¢
gelten:

[c](n) =m  gdw. (c,[z/n]) — ... — (skip, [x/m])

Daf§ das stimmt, kann man sich fiir dieses Beispiel leicht iiberlegen. Allge-
meine Techniken zum Beweis derartiger Eigenschaften werden wir erst spéter
kennen lernen.

2.3 Axiomatische Semantik

Als letzte Beispiel betrachten wir die axiomatische Semantik. Diese axioma-
tisiert Eigenschaften von Programmen, wobei die Eigenschaft durch Vor- und
Nachbedingungen formuliert sind, die auch. Zusicherungen genannt werden.
Dazu betrachten wir wieder das Programm c aus Beispiel [1.3] Wenn der Wert
der Variablen vor Ausfithrung des Programms while x > 0 do x:=x — 1 od
grofer als 0 ist, dann ist bei Terminierung des Programmes der Wert der Va-
riablen x der Wert 0 (wir setzen voraus, dal = eine Variable vom Typ integer
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ist). Als Zusicherung notieren wir diese Eigenschaft wie folgt:
{z > 1} while x > 0 do xx=x — 1 od {z = 0}

Dabei ist {z > 1} die Vorbedingung, unter der das Programm am Ende die
Nachbedingung {z = 0} erfiillt.

Die axiomatische Semantik gibt nun Regeln an, mit deren Hilfe alle giilti-
gen Zusicherungen bewiesen werden kénnen. Sie beschreibt damit implizit
die Bedeutung eines Programmes mit Hilfe seiner Eigenschaften und stellt
somit den Zusammenhang zur Programmverifikation her. Natiirlich gibt es
sehr viele giiltige Zusicherungen fiir ein Programm, im allgemeinen unendlich
viele. Beispielsweise gilt fiir unser Beispiel auch die Zusicherung

{r=nAz <0} whilex >0dox=x—1o0d {z =n}

d. h. wenn der Wert von x vor Ausfithrung des Programms n ist und aulerdem
kleiner als 0 ist, dann ist der Wert von x am Ende auch n.

Auch diese Semantik hat natiirlich einen Bezug zur operational und zur ma-
thematischen Semantik. Im wesentlichen ist dieser Bezug die Formalisierung
der Bedeutung von Zusicherungen mit Hilfe der operationalen oder der ma-
thematischen Semantik. Dies werden wir aber erst spéter prézisieren.

2.4 Diskussion der Ansatze

Neben den drei oben vorgestellten Ansétzen, gibt es noch eine Reihe wei-
terer Moglichkeiten einer Programmiersprache eine Semantik zuzuordnen.
Beispielsweise kann man einer Programmiersprache auch eine Semantik zu-
ordnen, indem man eine Ubersetzung in eine andere Programmiersprache
mit bereits definierter Semantik angibt (Ubersetzersemantik). Der Grund
fiir die Existenz der verschiedenen Ansétze ist, dafl die Definition einer Se-
mantik verschiedenen Zwecken dienen kann:

e Prézisierung der informellen Semantik einer Programmiersprache
e Verstdndnis einer neuen Programmiersprache
e Konstruktion von Compilern

e Untersuchung der grundlegenden Konstrukte einer Programmierspra-
che



10 KAPITEL 1. EINFUHRUNG

e Basis fiir die Verifikation
e Grundlegendes Verstédndnis fiir programmiersprachliche Konstrukte

Je nach dem Zweck, der mit der Definition einer Semantik verfolgt wird,
sind bestimmte Ansétze besser oder schlechter geeignet. Beispielsweise ist
die Axiomatische Semantik fiir die Verifikation besonders gut geeignet.

3 Das Dilemma der Semantik

Bei der Definition einer Semantik wird einem , Stiick Syntax“ (konkret ei-
nem Programm) ein ,Stiick Semantik® (konkret eine Abbildung) zugeord-
net. Bei genauer Betrachtung steht aber auf der ,,semantischen Seite* auch
wieder ,nur“ Syntax. Beispielsweise haben wir fiir unser erstes Beispiel (die
Fakultatsfunktion) die Semantik wie folgt definiert:

f:N—=N

n— nl

Zur Formulierung der mathematischen Abbildung haben wir aber wieder
Symbole, also Syntax, benutzt: N, —, +— und !. Dies sind zwar nicht die Sym-
bole aus der Programmiersprache, sondern Symbole aus der Mathematik, die
uns bereits in der Schule vertraut gemacht wurden und deren Bedeutung wir
,kennen“. Streng genommen miiiten wir aber zundchst die Semantik dieser
Symbole definieren, bevor wir sie benutzen kénnen, um eine Semantik fiir
eine Programmiersprache zu definieren. Wenn wir nun mit einer Formalisie-
rung dieser Symbole beginnen, werden wir schnell feststellen, da} wir mit
dem Formalisieren nie fertig werden, denn wir werden immer neue Symbole
einfiihren, deren Bedeutung wir dann wieder definieren miissen. Letztend-
lich miissen wir immer Symbole benutzen, um Sachverhalte zu formulieren.
Tatséchlich ist dies auch kein spezielles Problem der Semantik, sondern ein
fundamentales Problem der Mathematik und der Philosophie. Und auch dort
148t sich dieses Problem nicht wirklich l6sen.

Die Losung im Rahmen des Gebietes der Semantik besteht nun darin, dafl wir
davon ausgehen, dafl wir ein bestimmtes Gebiet der Mathematik so gut ken-
nen und ein gemeinsames Verstandnis dariiber besitzen, daf es nicht notig ist,
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es weiter zu formalisieren. Man sagt, dal wir von diesem Gebiet eine gemein-
same Pragmatik besitzen. Fiir uns ist die gemeinsame Pragmatik im wesent-
lichen die ,,Schulmathematik“. Der Riickzug auf eine gemeinsame Pragmatik
ist zwar keine wirkliche Losung des oben beschriebenen Problems, aber eine
sehr ,,pragmatische“ Losung — insbesondere da wir wissen, dafl wir das Pro-
blem prinzipiell nicht 16sen kénnen. Wir sollten uns bei der Definition von
Semantiken immer bewufit machen, dafl das Zielpublikum, fiir das wir eine
Semantik formulieren, die gleiche Pragmatik fiir die von uns benutzten Sym-
bole besitzen mufl — ansonsten ist die Definition der Semantik bedeungslos
und damit sinnlos.

4 Inhalt der Vorlesung

In der Vorlesung werden wir uns mit den verschieden Ansétzen zur Definition
von Semantiken einer Programmiersprache beschéftigen und die grundlegen-
den Techniken dazu kennen lernen. Dabei spielen induktive Definitionen und
Beweise sowie Fixpunkte eine zentrale Rolle. Wir werden sogar feststellen,
daBl beide Konzepte sehr eng zusammenhéngen. Insgesamt orientieren wir
uns dabei sehr stark am Buch von Glynn Winskel [11].

Der Schwerpunkt der Vorlesung liegt dabei auf den Konzepten zur Definition
von Semantiken. Die konkret definierten Semantiken dienen nur der Veran-
schaulichung und Einiibung dieser Techniken. Die Programmiersprachen, die
wir dazu betrachten, sind sehr minimalistisch, da die Definition der Seman-
tik von realistischen Programmiersprachen sehr aufwendig ist und die vielen
technischen Details einer realistischen Programmiersprache den Blick auf die
wesentliche Semantischen Konzepte verstellen. Am Ende der Vorlesung sind
wir aber prinzipiell in der Lage auch Semantiken fiir realistische Program-
miersprachen zu formulieren. Ein Beispiel fiir die Definition einer Semantik
einer realistischen Programmiersprache findet sich in dem Buch von Elfriede
Fehr [5].
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Kapitel 2

Grundlegende Begriffe und
Notationen

In diesem Kapitel fithren wir Begriffe und Konzepte ein, die als bekannt vor-
ausgesetzt werden. Sie stellen also die gemeinsame Pragmatik dar, die wir
als Ausweg aus dem Dilemma der Semantik benétigen. Die Begriffe selbst
sollten aus der Schule oder spétestens aus den Vorlesungen des Grundstudi-
ums bekannt sein. Da jedoch die Notationen fiir bestimmte Konzepte nicht
,hormiert“ sind, legen wir im folgenden die von uns benutzte Notation fest.
Nebenbei frischen wir die Kenntnisse iiber die zugrundeliegenden Begriffe
und Konzepte auf.

1 Mengen

Der fundamentalste Begriff, auf dem wir aufbauen, ist der Begriff der Menge.
Tatséchlich wiirde eine fundierte Einfithrung dieses Begriffes eine eigene Vor-
lesung erfordern. Fiir uns geniigt aber im wesentlichen das naive Verstédndnis
des Mengenbegriffes, der bereits in der Schule vermittelt wurde: Eine Zusam-
menfassung oder Ansammlung von Elementen. Dem interessierten Leser sei
jedoch die Lektiire eines Buches zur Mengenlehre empfohlen (z. B. [6]).
Wenn ein Element x zu einer Menge X gehort, schreiben wir dafiir x € X
wenn x nicht zu der Menge X gehort, schreiben wir x & X.

Einige Mengen haben eine besondere Bedeutung, so dafl wir eine eigne Be-
zeichnung fiir diese Mengen einfiihren:

e () bezeichnet die leere Menge, d. h. die Menge, die kein Element enthélt.

13
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e N bezeichnet die Menge aller natiirlichen Zahlen (inkl. 0):
N=1{0,1,2,3,...}.

e 7 bezeichnet die Menge aller ganzen Zahlen:
Z={.,-3,-2,-1,01,2,3,...}.

e B bezeichnet die Menge der Wahrheitswerte:
B = {true, false}.

Oft wird eine Menge X dariiber definiert, da§ man die Eigenschaft P(z)
aller ihre Elemente x angibt. Das ist insbesondere bei unendlichen Mengen
erforderlich. Dafiir benutzt man die Mengenkomprehension: X = {x | P(x)},
wobei P eine Pradikat iiber bzw. eine Eigenschaft von Objekten bezeichnet.
Eine Menge X heifit Teilmenge einer Menge Y, wenn fiir jedes Element x € X
auch gilt € Y. Wir schreiben dafiir X C Y. Die Menge X heifit echte
Teilmenge von Y, wenn wenigstens ein Element y € Y nicht in X vorkommt
(d.h. y € X). Wir schreiben dann X C Y.

Auf Mengen sind verschiedene Operationen definiert. Fiir zwei Mengen X
und Y bezeichnen

e X UY die Vereinigung der Elemente der beiden Mengen,
dh. XUY ={z]|z€ X oder z € Y}.

e X NY den Durchschnitt der Elemente der beiden Mengen,
dh XNY={z|z€Xund z €Y}

e X \ Y die Differenz der Elemente der beiden Mengen,
dh X\Y={z|zeXundaz gV}

e X x Y das Produkt der beiden Mengen,
dh X xY ={(z,y) |z € X,y e Y}.

Mit | X| bezeichnen wir die Kardinalitit oder die Méchtigkeit der Menge. Fiir
endliche Mengen ist das die Anzahl der Elemente der Menge. Eine unendli-
che Menge hat aber nicht die Kardinalitét ,,unendlich“ oder co! Denn es gibt
verschiedene unendliche Kardinalitdten. Beispielsweise haben die Menge der
natiirlichen Zahlen N und die Menge der reellen Zahlen R verschiedene Kar-
dinalitét, genauer |R| > |N|. Allerdings kann eine echte Teilmenge X einer
Menge Y dieselbe Kardinalitdt haben wie Y. Beispielsweise gilt |[N| = |Z].
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In der Informatik ist die Kardinalitdt der Menge der natiirlichen Zahlen von
besonderer Bedeutung und wir bezeichnen sie mit w. Mengen mit dieser Kar-
dinalitdt werden abzdhlbar genannt. Mengen mit echt groflerer Kardinalitét
werden dberabzdhlbar genannt.

Fiir eine Menge X bezeichnet 2% die Menge aller Teilmengen von X, d.h.
28 ={Y | Y C X}. Wir nennen 2% auch die Potenzmenge von X.

2 Relationen, Ordnungen und Aquivalenzen

Fir zwei Mengen X und Y nennen wir eine Teilmenge R C X X Y eine
Relation iiber X und Y. Wir betrachten meist Relationen mit X = Y. In
diesem Falle nennen wir R eine (bindre) Relation tber X. Fiir (z,y) € R
schreiben wir dann auch kurz = R y. In vielen Féllen wird die Relation auch
durch einen Pfeil — bezeichnet und wir schreiben dann z — y.

Eine bindre Relation R iiber X heift

o reflexiv, wenn fiir jedes x € X gilt x R «x,
e irreflexiv, wenn fiir kein x € X gilt = R x,

e transitiv, wenn fiir alle x,y, 2 € X mit x R y und y R z auch « R z
gilt,

o symmetrisch, wenn fiir alle x,y € X mit x R y auch y R x gilt,

e antisymmetrisch, wenn fiir alle z,y € X aus x R y und y R x folgt
x = y und sie heifit

e konner, wenn fiir alle x,y € X wenigstens eine der folgenden Bedin-
gungen gilt: © =y oder x Ry oder y R x.

Eine reflexive, transitive und antisymmetrische Relation R nennen wir eine
reflezive Ordnung. Fiir reflexive Ordnungen benutzen wir meist Symbole, die
yeine Richtung besitzen“ und die Gleichheit enthalten: <, <, C, C etc. Eine
reflexive Ordnung heifit total oder linear, wenn sie konnex ist, d. h. wenn zwei
beliebige Elemente immer in der einen oder anderen Richtung geordnet sind.

Achtung! Die meisten Ordnungen, die wir kennen, sind linear. Deshalb ist
man schnell geneigt, diese Figenschaft allen Ordnungen zu unterstellen. Es
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gibt aber Ordnungen, die nicht linear sind. Beispielsweise ist die Teilmen-
genbeziehung auf Mengen C nicht linear. Der Deutlichkeit halber nennt man
solche Ordnungen dann oft partielle Ordnungen.

Es gibt noch eine zweite Definition von Ordnungen, bei der explizit die

Gleichheit ausgeschlossen wird: Eine irreflexive und transitive Relation R
nennen wir eine irreflexive Ordnung. Fiir solche Ordnungen benutzt man
ebenfalls Symbole, die ,eine Richtung besitzen“ aber keine Gleichheit ent-
halten: <, <, C,C etc. Es ist leicht, eine gegebene reflexive Ordnung in eine
irreflexive Ordnung umzuwandeln und umgekehrt. Man mufl dazu nur alle
Paare (z,z) entfernen bzw. hinzufiigen.

In der Vorlesung geht meist aus dem Kontext hervor, ob wir iiber eine re-
flexive oder irreflexive Ordnung reden. Wir reden deshalb oft nur iiber Ord-
nungen, ohne explizit dazu zu sagen, welche Variante wir meinen. Manchmal
wandeln wir auch implizit eine reflexive Ordnung in eine irreflexive Ordnung
um, wenn das zweckméBiger ist. Dies entspricht dem Ubergang von < zu <.
Eine irreflexive Ordnung < iiber X heifit wohlgegriindet, wenn es keine un-
endlich absteigende Kette xy > x5 > x3 > ... von Elementen x; € X gibt.

Nebenbei wird hier ein beliebter Trick mit den gerichteten Symbolen fiir Ord-
nungen eingefihrt: Wir schreiben x; = x;y1 anstelle von x;11 < x;, d. h. wir
drehen die Symbole um, wenn uns das zweckmdfiger erscheint.

Eine Ordnung < iiber X wird hiufig auch als Paar (X, <) notiert. Fiir eine
Teilmenge Y C X definieren wir nun einige weitere Begriffe. Ein Element
x € Y heift minimal (in Y bzgl. <), wenn kein Element y € Y mit y < x
und x # y existiert, d.h. wenn fiir  kein echter Vorgédnger in Y existiert.
Ein Element x € Y heifit das kleinste Element von Y (bzgl. <), wenn fiir alle
y € Y gilt x <y, d.h. x ist kleiner (oder gleich) als alle anderen Elemente
von Y. Symmetrisch kann man die mazimalen und das grifite Element einer
Menge bzgl. einer Ordnung definieren.

Achtung! Die Begriffe des minimalen und des kleinsten Elementes werden oft
verwechselt, weil sie fiir viele uns vertraute Ordnungen zusammenfallen. Wir
missen diese beiden Begriffe aber sorgfiltig auseinander halten. Denn eine
Menge kann beziiglich einer Ordnung nur ein kleinstes Element besitzen (es
ist also eindeutig, wenn es existiert). Dagegen kann eine Menge mehrere mi-
nimale Elemente besitzen. Dieser Unterschied wird spdter noch sehr wichtig
werden.
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Fiir eine reflexive Ordnung (X, <) und eine Teilmenge Y C X heifit ein
x € X eine untere Schranke von Y, wenn fiir jedes y € Y gilt x < y. Wenn
die Menge der unteren Schranken von Y ein grofites Element besitzt, dann
heifit dieses die grifte untere Schranke von Y oder auch das Infimum von
X. Das Infimum von Y wird dann auch mit A Y bezeichnet. Entsprechend
heifit ein Element x € X eine obere Schranke von Y, wenn fiir jedes y € Y
gilt y < x. Die kleinste obere Schranke von Y heifit auch das Supremum von
Y und wird mit \/ Y bezeichnet.

Wenn fiir eine Ordnung (X, <) fiir jede Teilmenge ¥ C X das Infimum
existiert, dann nennen wir diese Ordnung auch einen vollstindigen Verband.

Fiir einen vollstindigen Verband wird nur gefordert, dafl ,alle Infima* exi-
stieren. Man kann aber zeigen, dafS in einem wvollstindigen Verband auch
fiir jede Menge Y das Supremum ezistiert. In einem vollstindigen Verband
existieren also ,alle Infima und Suprema,,.

Man kann jede Relation R transitiv machen, indem man alle transitiven
Abhéngigkeiten zur Relation hinzufiigt. Diese Relation bezeichnen wir dann
mit BT und wird auch die transitive Hiille von R genannt. Intuitiv ist so-
fort klar, was die transitive Hiille ist. Mathematisch gibt es verschiedene
Techniken, die transitive Hiille zu definieren. Eine Mo6glichkeit dazu ist, sie
als die kleinste transitive Relation zu definieren, die R umfait (dazu muf
man natiirlich zeigen, daf fiir jedes R diese Relation existiert). Ganz analog
ist der Begriff der reflexiv-transitiven Hiille einer Relation R definiert. Es
ist die kleinste reflexive und transitive Relation, die R umfafit. Die reflexiv-
transitive Hiille von R wird mit R* bezeichnet. Zusitzlich zu Rt kommen
noch alle Paare (z,2) zu R* hinzu (wg. der Reflexivitét).

Eine Relation R heifit Aquivalenzrelation oder kurz Aquivalenz, wenn sie
reflexiv, transitiv und symmetrisch ist.

3 Abbildungen

Eine Relation f iiber X und Y, fiir die fiir jedes x € X genau ein y mit
(z,y) € f existiert, heiit totale Abbildung von X nach Y. Eine Abbildung
f ordnet also jedem Element z € X eindeutig ein Element y € Y zu. Wir
schreiben dafiir auch f(z) = v.

Die Menge aller Abbildungen von X nach Y bezeichnen wir mit X — Y und
an Stelle f € (X — Y') von schreiben wir wie iiblich f: X — Y.
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Eine Relation f iiber X und Y, fiir die fiir jedes # € X hochstens ein y € Y
mit (x,y) € f existiert heiflt partielle Abbildung. Auch hier schreiben wir
f(z) = y. Der Unterschied zu den totalen Abbildungen ist, daf der Wert f(z)
nicht fiir jedes x € X definiert ist; wir schreiben dafiir auch f(x) = undef.
Wenn fiir alle z € X gilt f(x) = undef, nennen wir f die iiberall undefinierte
Abbildung; wir bezeichnen diese Abbildung auch mit €.

Die Menge aller partiellen Abbildungen von X nach Y bezeichnen wir mit
X — Y und wir schreiben auch f: X =Y fir f e (X —=Y).

Die Definition der partiellen Abbildungen fordert nicht, daf$ es ein Element
x mit f(z) = undef geben muf. Eine partielle Abbildung kann also total
sein. Tatsdchlich ist jede totale Abbildung eine partielle Abbildung im Sinne
der Definition. Das konnen wir auch als Inklusion formulieren: (X — Y) C
(X = Y) C2Xxy),

Um diesen sprachlichen Widerspruch etwas abzufedern, sprechen wir im fol-
genden meist von Abbildungen, wenn wir totale Abbildungen meinen und
explizit von partiellen Abbildungen, wenn wir eine (potentiell) partielle Ab-
bildung meinen.

Fiir zwei partielle Abbildungen f : X — Y und g : Y — Z bezeichnet
go f: X — Z ebenfalls eine partielle Abbildung, die wie folgt definiert ist
(go f)(x) = g(f(x)). Die Abbildung go f heifit die Funktionskomposition von
fund g.

Eine Abbildung f : X — Y heifit

e injektiv, wenn fiir alle z,y € X aus f(z) = f(y) folgt z = y, sie heifit

e surjektiv, wenn fiir jedes y € Y ein x € X mit f(z) =y existiert, und
sie heifit

e bijektiv, wenn sie injektiv und surjektiv ist.

Eine totale Abbildung kann man definieren, indem man fiir jedes x € X den
Wert f(z) = e angibt, wobei e ein Ausdruck ist, in dem x als freie Varia-
ble vorkommt und der zu einem Wert aus Y ausgewertet wird. Oft schreibt
man dafiir auch x +— e (vgl. Beispiele in Kapitel . Dadurch ist die Abbil-
dung punktweise (bzw. elementweise) definiert. Diese punktweise Definition
ist aber nicht sehr elegant, da wir die Abbildung nicht am Stiick deﬁnierenﬂ.

IDariiber werden wir spéter bei der Einfiihrung der mathematischen Semantik ausfiihr-
licher sprechen.
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Eleganter wéire eine Definition der Form f = ..., die die Abbildung insgesamt
festlegt. Dazu benutzen wir die Notation des Lambda-Kalkiils. Wir schreiben
f=MXx € X .e, wobei e ein Ausdruck ist, der zu einem Wert aus Y ausge-
wertet wird. Mit dieser Notation konnen wir beispielsweise die Quadrierung
wie folgt definieren:

f=MNr€Z . xxx

Der Lambda-Operator A dient dazu, den Definitionsbereich der Abbildung
zu bennenen und eine Bezeichnung festzulegen, mit der man im Ausdruck
auf den aktuellen Parameter der Abbildung Bezug nehmen kann. Den Wert
der Abbildung fiir einen konkreten Parameter konnen wir dann wie folgt
ausrechnen:

f(M =Nz €Z.xxx)(7)=Tx7=149

Az € X . e entspricht in Programmiersprachen dem Konzept der namenlosen
Funktionen oder dem Konzept der namenlosen Klassen in Java. Wir kénnen
eine Abbildung definieren, ohne sie zu benennen. Erst durch die Gleichung
f=Xx € X .e ordnen wir der Abbildung den Namen f zu.

Evtl. wird dieses Kapitel spater um weitere Begriffe erweitert.
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Kapitel 3

Operationale Semantik

In diesem Kapitel werden wir eine Technik zur Definition von operationalen
Semantiken kennenlernen. Diese Technik wird am Beispiel der Semantik fiir
eine einfache imperativen Programmiersprache IMP vorgefiihrt. Dazu fiithren
wir zunédchst die Syntax dieser Sprache ein. Danach definieren wir der Reihe
nach die Semantik der verschiedenen programmiersprachlichen Konstrukte:
arithmetische Ausdriicke, boolesche Ausdriicke und Anweisungen. Am Ende
werden wir dann verschiedene Varianten der Semantik diskutieren.
Insgesamt werden wir dabei eine Technik zur Definition einer operationalen
Semantik kennenlernen und zur Argumentation iiber diese.

1 Die Programmiersprache IMP

In diesem Abschnitt definieren wir die Syntax der einfachen imperativen Pro-
grammiersprache IMP. Diese Programmiersprache enthélt die {iblichen pro-
grammiersprachlichen Konstrukte Sequenz, bedingte Anweisung und Schleife
und die Zuweisung eines Wertes an eine Variable. Bevor wir die Syntax formal
definieren, betrachten wir ein Beispiel:

Beispiel 3.1 (Euklids Algorithmus)
Das folgende Programm berechnet den grofiten gemeinsamen Teile (ggT)
zweier positiver ganzer Zahlen x und y:

if (1 < x)A(1 <y) then
while =(x = y) do
if x <y then y:=y — x else x:=x — y

21
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1.1 Syntax

In diesem Programm kommen Konstanten und Variablen vor, aus denen
arithmetische und boolesche Ausdriicke gebildet werden. Die booleschen Aus-
driicke werden ihrerseits benutzt, um daraus die bedingte Anweisung und die
Schleife zu konstruieren. Dieser Konstruktion liegt das Prinzip der induktiven
Definition zugrunde.

Der Einfachheit halber lassen wir in unserer Programmiersprache nur Va-
riablen der Sorte integer bzw. der ganzen Zahlen zu. Fiir Konstanten und
Variablen werden wir uns nicht einmal die Miihe machen, deren konkrete
Syntax zu definieren. Wir gehen einfach davon aus, dal wir diese Konstrukte
irgendwie syntaktisch ausdriicken konnen. Konkret heifit das fiir die Spra-
che IMP, dafl wir die ganzen Zahlen Z und die Menge der Wahrheitswerte
B ,irgendwie® syntaktisch ausdriicken kénnen. Die Menge der Programmua-
riablen bezeichnen wir mit V. In unserem obigen Programm haben wir x
und y als Programmvariablen benutzt. Aber wir werden je nach Bedarf auch
weitere Bezeichnungen einsetzen, z. B. ggt oder result. Damit wir immer ge-
nug Programmvariablen zur Vefiigung haben, mufl V nur geniigend grof sein,
nédmlich abzéhlbar.

Fiir die weiteren Konstrukte geben wir spéter eine Syntax in Backus-Naur-
Form (BNF') an. Damit wir nicht jedes mal sagen miissen, fiir welche syntakti-
sche Menge bzw. Kategorie ein Symbol steht, legen wir fiir alle syntaktischen
Kategorien bestimmte Symbole fest. Dabei steht Aexp fiir die syntaktische
Menge bzw. Kategorie der arithmetischen Ausdriicke, Bexp fiir die boole-
schen Ausdriicke und Coom fiir die Anweisungen (bzw. Programme) der Pro-
grammiersprache IMP.

Kategorie | Symbole | Varianten

Z n, m ng, N1, Na,...,n",m, ...
B t tost to, ..t
\Y U, v Vg, U1, Vo, ..., u 0 ...
Aexp a ag, ay, o, ..., a,a’, ...
BGZL‘p b bo,bl,bg,...,bl,b//,...
Com c Co, C1,Coy ..., C " .
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Die Syntax fiir Aexp, Bexp und Com werden wir nachfolgend definieren.
Dabei nutzen wir aus, dafl bestimmte Symbole fiir ein syntaktisches Ob-
jekt einer bestimmten Kategorie gehtren. Beispielsweise stehen ag und a; fiir
arithmetische Ausdriicke. Im Gegensatz zu der sonst iiblichen Form der BNF
unterscheiden wir durch einen Index das mehrfache Auftreten von Objekten
derselben syntaktischen Kategorie. Dies ermoglicht es uns, spéter bei der De-
finition der Semantik direkt auf die richtigen Objekte zu verweisen.

Aexp: a:= n|v|ayta;|ap—ai|agxa;
B@Q?p: RS t]aozal\ao§a1]—|b0|b0/\b1|b0\/b1
Com: cu= skip|v:i=ag|c; |

if by then ¢ else ¢; | while by do ¢

Beispiel 3.2 (Beispiele fiir syntaktische Konstrukte)
Wir betrachten nun einige Beispiele fiir syntaktische Objekte der verschiede-

nen Kategorien:

1. Arithmetische Ausdriicke aus Aexp:

e 3+5undb+3
e 4711 und 04711

e x — 7 + 3 (Auf ein Problem mit diesem Ausdruck werden wir wei-
ter unten noch eingehen)

e X %Yy
2. Boolesche Ausdriicke aus Bexp:

true und false
e 3 <7

7>8 und 7> 8 sind gemdfl unserer Definition keine booleschen
Ausdriicke. Wir werden sie spdter — wenn wir Syntax nicht mehr
ganz so ernst nehmen — in Beispielen aber als Abkiirzung zulassen.
Beispielsweise steht dann x > y fir (y <z) A= (z = y).

0—|3§X
x =8 Ay <27
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3. Anweisungen aus C'om: Das Programm aus Beispiel [3.1]ist eine korrekte
Anweisung. Auch das folgende Programm ist eine korrekte Anweisung:

z:= 1;

y:= 1

while y < x do
Z:= Yy % X;
yvi=y + 1

Aber auch iiber diese Anweisung werden wir noch diskutieren miissen.

1.2 Abstrakte und konkrete Syntax

Wie schon angedeutet gibt es mit der Definition unsere Syntax noch ein Pro-
blem. Dazu betrachten wir nochmals den arithmetischen Ausdruck x — 7 + 3.
Denn diesen Ausdruck kénnen wir geméfl der BNF auf zwei verschiedene Wei-
sen bilden: Zunéchst bilden wir die drei Ausdriicke ag = x, a; = 7 und a, = 3.
Aus ag und a; konnen wir dann den Ausdruck a3 = x — 7 und zusammen
mit ay dann den Ausdruck ay = x — 7 + 3 bilden. Wir kénnen aber auch
erst den Ausdruck af = 7 + 3 und dann zusammen mit ag den Ausdruck
aj, =x — 7+ 3. Je nach dem wie wir die Ausdriicke gebildet haben besitzen
sie eine andere Struktur, die wir wie folgt durch (geordneteﬂ) Baume darstel-
len konnen:

ay a’4
+ -
2 NVAN
~ b4
RN /N
X 7 7 3
Dieselbe Zeichenreihe x — 7 + 3 bezeichnet also zwei verschiedene Biume

und damit zwei verschiedene Ausdriicke, die zu allem Uberflul auch noch
verschiedene Ergebnisse liefern, wenn man fiir x einen Wert einsetzt.

'Ein Baum heif$t geordnet, wenn auf den Kindern jedes Knotens eine Ordnung definiert
ist. Bei uns ist diese Ordnung durch die Leserichtung von links nach rechts definiert.
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Dasselbe Problem tritt auch bei der Definition von Anweisungen auf. Die
Teilanweisung while y < x do z:=y * z; y:= y 4+ 1 konnen wir geméafl der
BNF auf zwei verschiedene Weisen aufbauen:

while .

VARN " .\.

while . = y+l y <= x -
z:= y*z

do . y
y <= x z:= y*z

y:= y+1

Je nach Interpretation verhalten sich die beiden Programme sehr unterschied-
lich, weil die Anweisung y:= y + 1 im einen Fall zur Schleife gehort, im an-
deren aber nicht.

Es gibt verschiedene Mdoglichkeiten, dieses Problem zu Losen.

1. Die ordentliche Losung benutzt Techniken aus dem Gebiet des Uber-
setzerbaus bzw. der formalen Sprachen. Man kann durch verschiedene
Techniken dafiir sorgen, dafl die Grammatiken eindeutig sind und es
fiir jede Zeichenreihe, die von der Grammatik erzeugt wird, nur einen
Ableitungsbaum gibt. Allerdings werden die Grammatiken dann meist
sehr viel aufwendiger.

Da Syntaxanalyse und Ubersetzerbau nicht das Thema dieser Vorlesung
sind, verfolgen wir diesen Ansatz hier nicht weiter, sondern suchen uns
einen , billigeren Ausweg*.

2. Wir betrachten nicht die Zeichenreihen als die syntaktischen Objek-
te, sondern die Ableitungsbdume, die wir oben angeben haben. Wir
benutzen also die abstrakte Syntar um die Semantik einer Program-
miersprache zu definieren. Da die Ableitungsbdume die Struktur des
syntaktischen Konstruktes liefern, haben wir damit das Problem der
Mehrdeutigkeit gelost.

Allerdings haben wir damit das Problem auf eine andere Ebene ver-
schoben. Denn wir wollen spéter Ausdriicke und Anweisungen nicht
wirklich als Baume darstellen, weil das viel zu aufwendig wire. Aufler-
dem ist eine textuelle Darstellung fiir uns viel schneller zu erfassen. Die
Struktur eines Ausdrucks werden wir dann jedoch durch Klammerung
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angeben. Fiir unser obiges Beispiel konnen wir beispielsweise schreiben:
as = (x — 7) + 3 bzw. a), =x — (7 + 3). Auf dhnliche Weise benutzen
wir in Anweisungen die KlammernP| ™ und s um die Struktur der An-
weisung explizit zu machen. Unser vorangegangenes Beispiel war wie
folgt gemeint:

z:= 1;

y:i=1;

while y < x do
T z:=vy % X,

yvi=y + 1 4

Diese Klammern gehoren nicht zu der Syntax unserer Programmier-
sprache, weil wir ja nur die abstrakte Syntax, d. h. die Ableitungsbédume
betrachten. Sie dienen uns nur dazu, diese Struktur in einer ansonsten
mehrdeutigen Zeichenreihe zu finden. Die Klammern sind konkrete
Syntazx, um die Struktur eines Ausdruck oder Anweisung eindeutig zu
machen. Wir gehen im folgenden immer davon aus, dafl eine textuel-
le Reprasentation einer Anweisung genug konkrete Syntax enthélt, um
eindeutig auf die Struktur der Anweisung zu schlieflen.

Streng genommen ist in der Anweisung

z:= 1;

y:= 1;

while y < z do

T ozi=y x x;
y:=y + 1

immer noch nicht geniigend konkrete Syntaz enthalten, um eindeutig auf die
Struktur zu schlieffen. Aber das ist nicht ganz so schlimm. Warum?

1.3 Syntaktische Gleichheit

Wir nennen zwei Ausdriicke oder Anweisungen syntaktisch gleich, wenn sie
denselben Ableitungsbaum besitzen, d.h. wenn die abstrakte Syntax gleich
ist. Um die syntaktische Gleichheit auszudriicken, benutzen wir das Symbol
=, das wir auch schon benutzt haben, um Ausdriicke und Anweisungen zu
benennen. Wenn also zwei Ausdriicke ag und a; gleich sind, schreiben wir

2Diese Klammern ersetzen das begin und end in herkémmlichen Programmiersprachen
oder die geschweiften Klammern in Java oder C.
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ag = a,. Entsprechend schreiben wir fiir zwei Anweisungen ¢y = ¢;, wenn sie
syntaktisch gleich sind.
Das Symbol = gehort nicht zur Syntaz der Sprache. Wir fiihren es als ,Meta-

Symbol“ ein, um tiber die Syntax der Sprache zu reden. Insbesondere ist ag =
a1 kein boolescher Ausdruck!

Da wir die Gleichheit iiber die abstrakte Syntax formulieren, kénnen textu-
ell verschiedene Anweisungen syntaktisch gleich sein. Beispielsweise kénnen
sich die Anweisungen textuell durch einige Leerzeichen oder Zeilenumbriiche
unterscheiden. Sie konnen sich aber auch durch zusétzliche redundante Klam-
mern, also durch konkrete Syntax unterscheiden. Beispielsweise sind die Zei-
chenreihen x + y und (x + (y)) verschieden; die Ausdriicke sind dennoch
syntaktisch gleich, da sie denselben Ableitungsbaum besitzen und damit die
abstrakte Syntax gleich ist.
Eine weitere Moglichkeit fiir textuell verschiedene aber syntaktisch gleiche
Ausdriicke und Anweisungen ist die Darstellung von Konstanten, fiir die wir
ja keine konkrete Syntax definiert haben. Beispielsweise sind die Ausdriicke
007 und 7 syntaktisch gleich, da sie dieselbe Zahl aus Z bezeichnen. Entspre-
chend sind dann die Ausdriicke 007 + 693 und 7 + 693 syntaktisch gleich.
Allerdings sind die Ausdriicke 3 + 4 und 4 + 3 syntaktisch verschieden, da sie
verschiedene (geordnete) Ableitungsbdaume besitzen. Wir werden zwar spéter
sehen, daB die beiden Ausdriicke semantisch gleich sind (wir nennen das
dann dquivalent), aber syntaktisch sind sie verschieden. Entsprechend sind
die beiden booleschen Ausdriicke x = y und y = x syntaktisch verschieden,
obwohl sie semantisch gleich sind. Dies werden wir im folgenden sorgfiltig
auseinander halten.

FEs kann passieren, daf$ dieselbe Zeichenreihe ,syntaktisch verschieden® zu

sich selbst ist. Denn wir haben gesehen, daff x — 7 + & zwei Ableitungsbdume

besitzt. Allerdings betrachten wir solche Zeichenreihen im folgenden nicht

mehr, da wir davon ausgehen, daf die textuelle Reprdsentation von Aus-

driicken und Anweisungen immer gentigend konkrete Syntax enthdlt, um die
Ableitungsbiume eindeutig zu machen (vgl. Abschm'tt.

2 Semantik der Ausdriicke

Bevor wir die operationale Semantik der Anweisungen definieren koénnen,
miissen wir zundchst die Semantik der arithmetischen und booleschen Aus-
driicke definieren. Die operationale Semantik eines Ausdrucks definiert die
schrittweise Auswertung des Ausdrucks.
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2.1 Zustande

Beispielsweise wird der Ausdruck 3 4+ 5 zu 8 ausgewertet und der Ausdruck
007 4 693 zu 700. Diese Auswertungsrelation miissen wir nun ganz allgemein
fiir beliebige Ausdriicke definieren. So miissen wir auch den Ausdruck x + y
auswerten; allerdings miissen wir dazu die aktuellen Werte von x und y ken-
nen. Die aktuellen Werte der Variablen nennen wir Zustand. Im allgemeinen
konnen wir also einen Ausdruck nur dann auswerten, wenn wir den Zustand
kennen, bzw. die Auswertung eines Ausdrucks definieren wir fiir einen gege-
benen Zustand. Wir schreiben (a, o) — n, wenn der Ausdruck a im Zustand
o zu n ausgewertet wird.

Da wir in IMP nur Variablen vom Typ Z zugelassen haben, kénnen wir einen
Zustand wie folgt als Abbildung definieren.

Definition 3.1 (Zustand, Wert einer Variablen)

Eine totale Abbildung o : V — Z heifit Zustand. Die Menge aller Zustidnde
bezeichnen wir mit ¥ (d.h. ¥ =V — Z). Fiir eine Variable v € V nennen
wir o(v) den Wert von v im Zustand o.

Im folgenden kénnen wir nun die Auswertungrelation fiir arithmetische und
boolesche Ausdriicke in einem Zustand definieren.

2.2 Auswertungsrelation fiir arithmetische Ausdriicke

Die Auswertungsrelation definieren wir nun induktiv.

Definition 3.2 (Auswertungsrelation fiir Aexp)

Die Auswertungsrelation fiir arithmetische Ausdriicke ist eine dreistellige
Relation iiber Aexp, ¥ und Z, wobei wir ein Element der Relation durch
(a,0) — n notieren.

Die Auswertungsrelation ist induktiv iiber den Aufbau der arithmetischen
Ausdriicke definiert:

e Fiir a =n € Z gilt: (n,0) — n.
e Fiir a=v eV gilt: (v,0) — o(v).

o Fiir a = ag + a mit ag,a; € Aexp und (ag,0) — ng und (ay,0) — ng
gilt: (a,0) — ng + ny.
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Achtung, inag + ay ist das Zeichen + Syntaz; in ng+ny ist das Zeichen
+ Semantik, d. h. ng+ ny steht fir die Summer der beiden Zahlen ng+
ny.

Entsprechendes gilt fiir die nachfolgenden Schritte.

e Fiir a = ap—ay mit ag,a; € Aexp und (ag, o) — ng und (ay,0) — ny
gilt: (a,0) — ng — ny.

e Fiir a = ag*a; mit ap,a; € Aexp und (ag,0) — no und (a;, o) — my
gilt: (a,0) — ng - ny.

Diese Definition kénnen wir auch durch Regeln notieren, wobei es fiir je-
den Punkt der induktiven Definition genau eine Regel gibt. Dabei sind die
Mengen, aus denen n, ng, ni, v, ag, a; und o geméfl unserer Konventionen
gew#hlt werden konnen eine implizite Nebenbedingung fiir diese Regeln:

(n,o) —n (v,0) = o(v)
<CL0,0’> — Ny <a1,0>—>n1 <CL0,0’> — Ny <a1,0>—>n1
(ap+ay, o) — ng +ny (ap—ay,0) — ng —ny

(ap,0) = ng (a1,0) —
(ag*ay, o) — ng - ny

Die Regeln lassen sich wie folgt lesen: Uber dem Strich stehen bestimmte Aus-
sagen, die die Voraussetzung der Regel bilden; wenn diese Voraussetzungen
erfiilllt sind, dann gilt auch die Aussage unter dem Strich, die Schlufifolge-
rung. Die ersten beiden Regeln haben keine Voraussetzung, d.h. dafl ihre
Schlufifolgerung in jedem Falle gilt. Solche Regeln heilen auch Aziome; sie
entsprechen dem Induktionsanfang der induktiven Definition. Mit Hilfe der
Axiome und Regeln lassen sich dann schrittweise weitere Aussagen herleiten.
Da es fiir jedes Konstrukt der arithmetischen Ausdriicke genau eine Regel
gibt, kann man leicht zeigen, dafl es fiir jeden arithmetischen Ausdruck a
und jeden Zustand o genau eine Zahl n € Z gibt, fir die (a,0) — n gilt,
d. h. jedem arithmetischen Ausdruck ist in jedem Zustand eindeutig ein Wert
zugeordnet.

Beispiel 3.3 (Auswertung eines arithmetischen Ausdrucks)
Die Auswertung des arithmetischen Ausdrucks (x — 2) * y in einem Zustand
o mit o(x) = 2 und o(y) = 9 kénnen wir dann in Form eines Ableitungsbau-
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mes notieren:

(x,0) — 2 (2,0) — 2
(x —2,0)—0 (y,0) =9
(x=2)xy,0) =0

Dabei wird zunédchst der Baum von der Wurzel her von unten nach oben
aufgebaut, ohne die rechten Seiten zu kennen. Diese werden dann von den
Axiomen her von oben nach unten geméafl der Regeln eingefiigt.

Allein fiir die Definition der Auswertung der arithmetischen Ausdriicke wdre
der hier betriebene Aufwand etwas tbertrieben. Die induktive Definition fiir
die Auswertung hitte vollkommen gereicht. Nachfolgend werden wir aber die
Semantik der booleschen Ausdriicke und vor allem die Semantik der An-
weisungen ganz analog durch Regeln definieren. Deshalb benutzen wir der
Einheitlichkeit halber auch hier schon dieselbe Technik.

Mit Hilfe der Semantik fiir arithmetische Ausdriicke konnen wir nun definie-
ren, wann zwei arithmetische Ausdriicke ,,semantisch® gleich sind: namlich
dann, wenn beide Ausdriicke fiir jeden Zustand dasselbe Ergebnis liefern.

Definition 3.3 (Aquivalenz arithmetischer Ausdriicke)

Zwei arithmetische Ausdriicke ag und a; heiflen dquivalent, wenn fiir jeden
Zustand o und jede Zahl n € Z die Aussage (ag,0) — n genau dann gilt,
wenn auch (aj, o) — n gilt. Wenn ag und a; dquivalent sind, dann schreiben
wir ag ~ a;.

Beispielsweise gilt x + y ~ y + x. Dies 148t sich einfach anhand der Regeln
fiir die Auswertungsrelation zeigen: Wenn (x + y,0) — n gilt, muB} dies
mit der einzigen Regel fiir x 4+ y hergeleitet worden sein. Dementsprechend
existieren ganze Zahlen ng und ny mit n = ng + n; und (x,0) — ng und
(y,0) — nq. Daraus 148t sich dann wieder mit der Regel fiir y + x die Aussage
(y + x,0) — n herleiten. Ganz analog kann man die umgekehrte Richtung
der ,,genau-dann-wenn“-Aussage beweisen.

2.3 Auswertungsrelation fiir boolesche Ausdriicke

Die Auswertungsrelation fiir boolesche Ausdriicke definieren wir analog zur
Definition der arithmetischen Ausdriicke. Wir geben die induktive Definition
direkt in Form von Regeln an:
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Definition 3.4 (Auswertungsrelation fiir Bexp)

In den folgenden Regel treten die Wahrheitswerte true und false als Syntaz
und als Semantik auf. Wir unterscheiden diese Varianten durch die Darstel-
lung in verschiedenen Schriftarten. Aus dem Kontext wdre aber auch ohne
diese Unterscheidung immer klar, wo die syntaktische und wo die semanti-
sche Variante gemeint ist.

(true, o) — true
(ag,0) = n {(a1,0) —=n

(ap=ay,0) — true

(a0,0>—>n0 <a1,0>—>n1

<
(ap<ay,o) — true o =T

(b,0) — false
(=b, o) — true

(by, o) — false (by,0) —t
(boAby, o) — false

(bo,0) — true (by,0) — true
(boAby, o) — true

(by,0) — true (by,0) —t
(boVby,0) — true

(by, o) — false (by,0) — false

(false, o) — false

(ag,0) = ng {(a1,0) — m

(ap=ay,0) — false no 7 1

<a0,0'> — Ny <a1,0>—>n1

ng > n
(ap<ay,o) — false 0 !

(b,0) — true
(=b,0) — false
<b07 0> —1 <b17 0> - false
(boAby, o) — false

(bg,0) —t (by,0) — true
(bo\VVb1,0) — true

(bo\Vby,0) — false

In unserer Definition erzwingen wir durch die Regeln beim UND- bzw. ODER-
Operator immer die Auswertung beider Argumente. In vielen Programmier-
sprachen werden stattdessen diese Operatoren sequentiell definiert; d. h. wenn
durch die Auswertung des ersten Argumentes das Ergebnis des booleschen
Ausdrucks schon klar ist, wird das zweite Argument nicht mehr ausgewertet.
Da die Auswertung von Ausdriicken bei uns zunéchst immer definiert ist und
auch keine Seiteneffekte haben kann, macht das im Ergebnis keinen Unter-
schied. Bei spéteren Erweiterungen — die es erlauben werden, dafl die Aus-
wertung eines Ausdrucks kein Ergebnis liefert oder zu Seiteneffekten fiihrt
— macht dies aber einen Unterschied. Das werden wir uns in einer Ubung
genauer ansehen. Ebenso kénnen wir einen parallelen UND- oder ODER-
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Operator definieren, der das Ergebnis des Ausdrucks ausgibt, sobald es aus
dem Ergebnis eines der beiden Argumente folgt.

Im Gegensatz zu den Regeln fiir die arithmetischen Ausdriicke, gibt es fiir
die Auswertung der booleschen Ausdriicke in manchen Féllen mehrere Re-
geln die man bei der Auswertung anwenden kann. Ein Beispiel dafiir ist ein
boolescher Ausdruck byAb; bei dem sowohl by als auch by zu false ausgewer-
tet werden. Denn dann sind zwei Regel anwendbar. Gliicklicherweise fiihrt
die Anwendung beider Regeln zu demselben Ergebnis. Wir werden in einer
Ubung beweisen, daB die Auswertung der booleschen Ausdriicke geméaf der
obigen Definition tatsédchlich immer eindeutig ist.

Analog zur Definition der Aquivalenz von arithmetischen Ausdriicken, de-
finieren wir nun die Aquivalenz der booleschen Ausdriicke. Zwei boolesche
Ausdriicke sind dquivalent, wenn sie in jedem Zustand gleich ausgewertet
werden:

Definition 3.5 (Aquivalenz boolescher Ausdriicke)

Zwei boolesche Ausdriicke by und by heiflen dquivalent, wenn fiir jeden Zu-
stand o und jeden Wahrheitswert ¢t € B die Aussage (by, o) — ¢ genau dann
gilt, wenn auch (b, o) — t gilt. Wenn by und b; dquivalent sind, dann schrei-
ben wir by ~ b;.

Beispielsweise kénnen wir die Regel von De Morgan als Aquivalenz formu-
lieren: Fiir alle booleschen Ausdriicke by und by gilt by V by ~ =(=by A —by).
Diese kann man mit Hilfe der Regeln zur Definition der Auswertungsrelation
nachweisen.

3 Semantik der Anweisungen

Nachdem wir nun Ausdriicke auswerten kénnen, werden wir als néchstes die
Semantik von Anweisungen der Programmiersprache IMP angeben. Dabei
definieren wir eine dreistellige Relation iiber Com, ¥ und X. Ein Element
dieser Relation geben wir in der folgenden Notation an:

(c,0) — 0o

Dabei bedeutet (c,o) — o', da} die Anweisung ¢ im Zustand ¢’ terminiert,
wenn man sie im Zustand o startet. Fiir die Zuweisung x:= 5 gilt beispiels-
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weise (x:= 5,0) — o', wobei der Zustand ¢’ wie folgt definiert ist:

, 5 fir v =x
o(v) :{ o(v) fiir v#x
Der Zustand ¢’ entsteht dabei aus dem Zustand o durch Modifikation der
Abbildung an (ausschliefllich) der Stelle x. Da wir solche Modifikationen bei
der Definition der Semantik immer wieder benotigen, fithren wir dafiir eine
eigene Notation ein: Wir schreiben o’ = o[5/x].

Definition 3.6 (Modifikation eines Zustandes)
Fiir einen Zustand o € X, eine ganze Zahl n € Z und eine Variable u € V
bezeichnet o[n/u] einen Zustand (d.h. o[n/v] € ¥), der wie folgt definiert

1st:
n firv=u
olnful(v) = { o(v) firvZu
Fiir einen Zustand o, ganze Zahlen ny, no, ..., nx € Z und Variablen uy, us, ..., u; €

V bezeichnet o [ny /uy, no/us, . .. ng/uy| den Zustand o|ny /uq|[ne/uq] . . . [ng/ug].

Mit Hilfe dieser Notation kénnen wir nun die Semantik fiir Anweisungen
definieren:

Definition 3.7 (Semantik von Anweisungen)
Die Semantik fiir Anweisungen ist durch die folgenden Regeln definiert:

(a,0) = n (co,0) = 0" (c1,0") — o
(skip,0) — 0 (v:i=a,0) — on/v] (co;c1,0) — o
(b,0) — true {(co,0) — 0’ (b,0) — false {(c1,0) — o’

(if b then ¢ else ¢;,0) — ¢’ (if b then ¢ else ¢;,0) — o’

(b,0) — false
(while b do ¢,0) — o

(b,o) — true {(c,0) — ¢” (while b do ¢,o") — o’

(while b do ¢,0) — o

In der letzten Regel tritt die Anweisung while b do c in ihrer eigenen Voraus-
setzung wieder auf. Allerdings wird sie dort im allgemeinen in einem ande-
ren Zustand betrachtet. Deshalb terminiert irgendwann der Aufbau des Ab-
leitungsbaumes fiir die Semantik, wenn die Schleife terminiert. Wenn die
Schleife nicht terminiert, konnen wir allerdings kein (while b do ¢,c) — o’
herleiten. Aber dies bedeutet ja gerade, dafS die Schleife nicht terminiert.
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Wie wir eben gesehen haben, mufl es nicht fiir jede Anweisung ¢ und jeden
Zustand o einen Zustand ¢’ mit (¢,0) — o’ geben (im Gegensatz zu der
Auswertung von Ausdriicken). Wenn ein solches ¢’ nicht existiert, bedeutet
dies gerade, dafl die Anweisung ¢ nicht terminiert, wenn sie im Zustand o
gestartet wird. Allerdings gibt es fiir jede Anweisung ¢ und jeden Zustand
o' immer hochstens ein ¢’ mit (¢,0) — o'. Dies bedeutet gerade, dal die
Semantik der Programmiersprache IMP deterministisch ist.
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Beispiel 3.5 (Endlosschleife)

Ein weiteres Beispiel ist die folgende Schleife: w = while true do skip. Wenn
wir fiir einen Zustand o einen Tripel (w, o) — ¢’ ableiten wollen, stellen wir
fest, dafl die Regel fiir die Schleife wieder dieselbe Voraussetzung hat:

(true, o) — true (skip,0) -0 (w,0) —7
(w,o) =7

Wir geraten also beim Suchen nach einer Ableitung in eine Endlosschleife
und man sieht leicht, daff es fiir kein ¢’ eine Herleitung fir (w,o) — o
geben kann. Dies ist auch nicht weiter verwunderlich, da dies ja gerade dem
Verhalten einer Endloschleife entspricht.

Wir werden spiter (siche Beispiel mn Kapitel auf Seite eine Technik
kennenlernen, mit der man auch beweisen kann, daf fir kein o und o’ ein
Tripel (w,c) — o’ herleitbar ist.

Ganz analog zu Ausdriicken kénnen wir nun auch definieren, wann zwei An-
weisungen dquivalent sind, ndmlich genau dann, wenn beide fiir jeden An-
fangszustand im selben Zustand terminieren (oder beide nicht terminieren).

Definition 3.8 (Aquivalenz von Anweisungen)

Zwei Anweisungen cg und c¢; heilen dquivalent, wenn fiir alle Zustéinde o und
o' die Aussage (cg,0) — ¢’ genau dann gilt, wenn auch (c;,0) — o gilt.
Wenn ¢y und ¢; dquivalent sind, dann schreiben wir ¢y ~ ¢;.

Mit Hilfe der Definition der Semantik von IMP koénnen wir dann auch be-
weisen, dafl bestimmte Anweisungen dquivalent sind. Dazu betrachten wir
wieder ein Beispiel.

Beispiel 3.6

Sei w = while b do ¢ wobei b ein beliebiger boolescher Ausdruck und ¢ eine
beliebige Anweisung ist. Dann gilt w ~ if b then c¢; w else skip

Um dies zu beweisen, miissen wir zeigen, dafl fiir alle Zustédnde o und o’ gilt:

(w,0) — ¢ gdw (if b then ¢ ; w else skip,o) — o’

Wir betrachten die beiden Richtungen dieser Genau-Dann-Wenn-Aussage
einzeln:
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»=*: Gelte also (w,0) — ¢’. Dann gibt es eine Herleitung fiir (w, o) — o’.
Wir zeigen nun, dafl es dann auch eine Herleitung fiir

(if b then ¢ ; w else skip,o) — o’

gibt. Geméf der Regeln fiir die Semantik der Schleife hat die Herleitung
dann eine der beiden folgenden Formen:

(b, o) —> false
1 (wo)—o

oder

1 /

(b,0) — true (c,o0) =0 (w, 0"y — o

(2) (w,0) — 0o’

Wir betrachten nun diese beiden Falle einzeln:

Fall (1): In diesem Falle gilt 0 = ¢’ und es gibt eine Herleitung fiir
(b,0) — false. Daraus konnen wir nun die folgende Herleitung
konstruieren:

(b,0) — false  (skip,o) — o
(if b then c¢; w else skip,o) — o

Mit ¢/ = o gilt die Behauptung.

Fall (2): In diesem Falle gibt es Herleitungen fiir (b, o) — true, {(¢,0) —
o’ und (w, 0"y — o’. Aus diesen Herleitungen kénnen wir die fol-
gende Herleitung konstruieren:

(c,o) = o"  (w,0") — o

(b,0) — true (c; w,o) — 0o
(if b then c¢; w else skip,o) — o

Und damit gilt die Behauptung.
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¢: Seinun also (if b then ¢; w else skip, o) — ¢’ herleitbar. Diese Her-

leitung kann geméaf der Regeln fiir die Bedingung, die Anweisung skip
und die Sequenz die beiden folgenden Formen haben:

(b,0) — false  (skip,o) — o
(1)  (if b then c¢; w else skip,o) — o

d.h. 0/ = 0 und
: (c,o) = d"  (w,0") — o
(b,0) — true (c; w,0) — 0o
(2) (if b then ¢; w else skip,o) — o’

Aus diesen Herleitungen miissen wir nun jeweils eine Herleitung fiir
(w,o) — ¢’ konstruieren:

Fall (1): In diesem Falle kénnen wir daraus die folgende Herleitung
konstruieren:

(b, o) —> false

(w,0) — o

Wegen ¢’ = o ist diese eine Herelitung fiir (w, o) — o'

Fall (2): In diesem Falle konnen wir daraus die folgende Herleitung
konstruieren:

(b,0) — true (c,o) = d"  (w,d") — o

(w,0) — o

Dies ist die Herleitung fiir (w, o) — o,

Insgesamt haben wir gezeigt, dal wir eine Herleitung fiir (w,o) — o' im-
mer in eine Herleitung fiir (if b then ¢ ; w else skip,o) — ¢’ ,umbauen”
konnen und umgekehrt. Damit ist also die Aquivalenz beider Anweisungen
bewiesen.
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4 Alternative Definitionen

In den vorangegangenen Abschnitten haben wir eine Semantik fiir die Pro-
grammiersprache IMP angegeben. Natiirlich kann man dieselbe Semantik auf
viele verschiedene Weisen definieren. Beispielsweise haben wir in unsere De-
finition keine Reihenfolge fiir die Auswertung der Operanden in einem arith-
metischen oder booleschen Ausdruck festgelegt. Da die Programmiersprache
IMP keine Seiteneffekte zuléaflt, ist die Auswertungreihenfolge fiir das Ergeb-
nis auch irrelevant. Wir werden aber in der Ubung einige Erweiterungen von
IMP betrachten, die Seiteneffekte haben. Dann macht es einen Unterschied,
in welcher Reihenfolge die Operanden ausgewertet werden.

Ein Beispiel fir einen arithmetischen Ausdruck mit einem Seiteneffekt ist
das Konstrukt z++, das aus der Programmiersprache C oder Java bekannt
ist. Neben der Auswertung der Variablen wird der Wert der Variablen auch
verdndert.

In diesem Abschnitt zeigen wir anhand einiger Ausschnitte eine alternative
Definition der Semantik der Programmiersprache IMP. In dieser Semantik
wird der Charakter des schrittweisen Auswertens von Ausdriicken und des
schrittweisen Abarbeitens von Anweisungen noch deutlicher:

Achtung: Die nachfolgenden Regeln sind nicht vollstindig. Sie sollen nur
die Idee der Semantikdefinition vermitteln. Wir werden diese Semantik in
der Ubung vervollstindigen. Damit wir die neue Definition von der vorange-
gangenen unterscheiden kionnen, geben wir thr den Index 2.

Regeln fiir die Auswertung von Ausdriicken

Mt m.o) =, (o) Fontm
(ag, 0) —2 (ag, o’) (a1,0) — (a},0’)
(ag —|—a1,a> —>9 <a6 +ay, o) <n+a1,0> —9 <n+a’1,0’)

Im Gegensatz zur vorangegangenen Definition geben wir fiir einen Ausdruck
nicht nur das Ergebnis der Auswertung an, sondern auch den resultierenden
Zustand. Bei den obigen Regeln bleibt dieser Zustand immer gleich. Aber
das Schema ermoglicht es uns, spéater bei der Auswertung von Ausdriicken
auch den Zustand zu veréndern.
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Regeln fiir die Ausfiihrung von Anweisungen

{a,0) — {(d',0")
(vi=a,0) —9 (v:i=d’,o[n/v]) (v:i=n, o) —4 (skip, o[n/v])

{b,0) =5 (V',0")
(if b then ¢ else ¢1,0) —4 (if I then ¢, else ¢, 0)

(if true then ¢ else ¢1,0) —3 (o, 0)

(if false then ¢ else ¢1,0) —9 (c1,0)

In dieser Semantik werden bei der Ausfithrung der Anweisungen, die Aus-
driicke schrittweise vereinfacht und auch die Anweisungen selbst werden ver-
einfacht. Solche Semantiken werden auch Textersetzungssemantiken genannt.

5 Zusammenfassung

In diesem Kapitel haben wir gezeigt, wie man fiir imperative Programmier-
sprachen mit Hilfe von Regeln eine Semantik angeben kann. Fiir jedes Kon-
strukt (jeden Operator) der Programmiersprache gibt es Regeln, die die Se-
mantik dieses Konstruktes beschreiben. Die Semantik jedes Konstruktes kann
dabei unabhéngig von der Semantik der anderen Konstrukte beschrieben wer-
den. Deshalb kann man relativ einfach neue Konstrukte zu einer Program-
miersprache hinzufiigen und die Semantik einfach erweitern. Diese Prinzip
ist recht vielseitig und 148t sich auf die unterschiedlichsten Programmier-
sprachen anwenden. Sehr verbreitet ist dies Art der Semantikdefinition im
Bereich der Prozeflalgebren, wie z. B. CCS zur Beschreibung der Interaktion
verschiedener Prozesse [0]. Dieses Prinzip wurde von Gordon Plotkin ein-
gefiithrt und Strukturelle Operationale Semantik (engl. structural operational
semantics) (SOS) genannt [10].

Tatséchlich ist die Definition einer Strukturellen Operationalen Semantik ei-
ne induktive Definition. Die Beweise die wir damit fiihren sind Induktionsbe-
weise. Deshalb — und weil Induktion in der Informatik fast iiberall vorkommt
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— werden wir uns im néchsten Kapitel das Prinzip der induktiven Definition
und des induktiven Beweisens etwas genauer ansehen. Dabei werden wir ins-
besondere die Beweistechniken, die wir hier benutzt haben auf eine formale
Grundlage stellen.

Zum Beweis der Aquivalenz von Ausdriicken und Anweisungen haben wir die-
se Techniken schon angewendet. Dabei haben wir insbesondere ausgenutzt,
daB die Regeln die Struktur einer Herleitung festlegen und aus der Herlei-
tung fiir eine Aussage ein andere konstruiert. Diese Beweise sind meist nicht
schwierig, aber aufwendig. Deshalb werden wir fiir den Nachweis der Kor-
rektheit der Programme spéter andere Techniken kennen lernen, die nicht
unmittelbar auf der Definition der Semantik arbeiten.
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KAPITEL 3. OPERATIONALE SEMANTIK



Kapitel 4

Induktive Definitionen und
Beweise

Bei der Definition der Semantik der Programmiersprache IMP haben wir an
vielen verschiedenen Stellen induktive Definitionen benutzt: angefangen bei
der Syntax von IMP, {iber die Semantik der Ausdriicke bis hin zur Seman-
tik der Anweisungen. Teilweise waren die Definitionen explizit induktiv, wie
beispielsweise bei der Definition der Semantik fiir arithmetische Ausdriicke.
Teilweise waren die Definitionen ,,versteckt“ induktiv. Beispielsweise verbirgt
sich hinter der Definition der Syntax durch eine Grammatik auch eine induk-
tive Definition; ebenso verbirgt sich hinter der Definition der Semantik durch
Regeln eine induktive Definition.

Wenn man genau hinsieht, gibt es in der Informatik fast nichts, was nicht
induktiv definiert wére. Davon werden wir uns im weiteren Verlauf der Vor-
lesung noch iiberzeugen kénnen. Deshalb spielen induktive Definitionen und
Beweise in der Informatik eine ganz zentrale Rolle — ob man sie nun explizit
macht oder nicht.

Aus diesem Grunde beschiftigen wir uns in diesem Kapitel ausfiihrlich mit
diesem Thema. Wir beginnen damit, dafl wir das Prinzip der wvollstindigen
Induktion zur Noetherschen Induktion verallgemeinern. Danach werden wir
das Prinzip der induktiven Definition mit Hilfe von Regeln und der durch
sie definierten Menge prézisieren. Dann werden wir zeigen, wie man Eigen-
schaften von induktiv definierten Mengen beweisen kann: die Regelinduktion.
Am Ende beschéftigen wir uns dann mit der Herleitung und der Definition
induktiv iber die Struktur einer Menge.

43



44 KAPITEL 4. INDUKTIVE DEFINITIONEN UND BEWEISE

1 Noethersche Induktion

Ein grundlegendes und sehr einfaches Beweisprinzip, das teilweise schon
im Schulunterricht in der Oberstufe vermittelt wird, ist das Prinzip der
vollstindigen Induktion. Dabei beweist man, daf eine Aussage fiir alle natiirli-
chen Zahlen gilt, indem man die Aussage fiir ¢ = 0 beweist und dariiber
hinaus zeigt, dafl die Aussage fiir 7 + 1 gilt, falls sie fiir ¢ gilt. Man ,,hangelt*
sich mit diesem Prinzip ausgehend von der Aussage fiir 0 zu jeder natiirlichen
Zahl durch. Die Aussage gilt damit fiir jede natiirliche Zahl.

Dieses Prinzip konnen wir wie folgt formulieren, wobei wir die Aussage durch
ein Pradikat P C N formalisieren. Wir sagen, dafl das Préidikat bzw. die
Aussage fiir eine Zahl n gilt, wenn n € P gilt; wir schreiben dafiir auch
P(n).

Prinzip 4.1 (Vollstindige Induktion)
Sei P C N ein Pradikat iiber den natiirlichen Zahlen. Wenn

Induktionsanfang: P(0) gilt und
Induktionsschritt: fiir jedes ¢« € N mit P(i) auch P(i + 1) gilt,
dann gilt P(n) fir jedes n € N (d.h. P =N).

Im Induktionsschritt nennt man die Voraussetzung P(i) auch die Indukti-
onsvoraussetzung.

Man kann das Prinzip der vollstindigen Induktion auch knapp wie folgt for-
mulieren:

(P(0) AVi € N.(P(i) = P(i + 1)) = ¥n € N.P(n)

Tatsdchlich ist das Induktionsprinzip ein Axiom zur Formalisierung der natiirli-
chen Zahlen. Deshalb beweisen wir das Induktionsprinzip auch nicht. Aller-
dings beschdftigen wir uns hier nicht mit der Axziomatisierung der natirlichen
Zahlen. Wir wenden das Prinzip ,nur® an — zum Beweisen von Aussagen.

Um zu sehen, wie man das Induktionsprinzip zum Beweisen einer Aussage
einsetzen kann, betrachten wir ein einfaches Beispiel.

In der Vorlesung wird das Prinzip der vollstindigen Induktion nur kurz wie-
derholt. Der folgende Beweis wird gar nicht besprochen. Er sollte aber ohne
Probleme mit den Kenntnissen des Grundstudiums verstindlich sein.
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Beispiel 4.1

Aus der Schule wissen wir, dafl sich die Summe aller Zahlen von 1 bis zu
einer Zahl n geschlossen durch den Ausdruck * (n+1 darstellen 1&8t, d. h. fiir
jede natiirliche Zahl n € N gilt:

" n-(n+1
Shio )

i=1
Wir beweisen diese Aussage nun mit Hilfe der vollstéindigen Induktion. Dabei
ist das Pradikat P wie folgt definiert:

ZZ— n+1)

Wir beweisen nun durch vollstandige Induktion, dal P(n) fir jedes n € N
gilt:
Induktionsanfang: Wir miissen P(n) fir n = 0, d.h. Y0 i = @,

zeigen. Offensichtlich gilt Z i1 =0= (0;1).

Induktionsvoraussetzung: Wir gehen nun davon aus, daB fiir ein n € N
die Aussage P(n) gilt, d.h. > i = w

Induktionsschritt: Wir zeigen nun, daf§ dann auch die Aussage P(n + 1)

gilt, d.h. Y7 = nb( e,

Z?:ll i = O )+ (n+1) Aufteilung der Summe
= % + (n+1) Induktionsvoraussetzung
n-(n+1)42:-(n+1)

= nledDi2(il) Rechenregeln
_ w Rechenregeln
_ w Rechenregeln

GeméiB des Prinzips der vollsténdigen Induktion gilt damit P(n) fiir jedes
n € N. Die Aussage Y . ;i = % ist damit fiir jedes n € N bewiesen.

Diese Aussage kann man auch ohne (explizite Benutzung der vollstindigen
Induktion) beweisen:

1+ 2 4+ ... 4+ (n=1) + n
n 4+ (n-1) 4+ ... + 2 + 1
n+1) + (n+1) + ... + (n+1) + (n+1)

Die doppelte Summe aller Zahlen von 1 bis n ist also n- (n+ 1). Allerdings
verbirgt sich hinter den Piinktchen ... doch wieder eine heimliche Induktion.
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Das Beweisprinzip der Induktion ist nicht auf die Struktur der natiirlichen
Zahlen beschrankt. Die einzige Voraussetzung ist, dafl die zugrundeliegende
Struktur einen oder mehrere ,, Anfange® besitzt und dafl jedes Element aus-
gehend von diesen ,, Anfangen* irgendwann erreicht wird. Solche Strukturen
sind gerade die wohlgegriindeten Ordnungen (siehe Kapitel Abschnit.
Das Prinzip der Noetherschen Induktion sagt, dafl eine Aussage fiir alle Ele-
mente einer wohlgegriindeten Ordnung gilt, wenn man fiir jedes Element
zeigen kann, dafl die Aussage fiir das Element selbst gilt, wenn sie fiir alle
Vorgéinger des Elementes gilt.

Prinzip 4.2 (Noethersche Induktion)

Sei (X, <) eine wohlgegriindete (irreflexive) Ordnung und P C X ein Préadi-
kat iiber X. Wenn fiir jedes x € X, fiir das fiir jedes y € ¥ mit y < z die
Aussage P(y) gilt, auch P(zx) gilt, dann gilt fiir jedes z € X die Aussage
P(z) (d.h. P = X).

Wir konnen analog zum Prinzip der vollstindigen Induktion das Prinzip der
Noetherschen Induktion wie folgt formulieren:

(Ve e X.(Vy < z.P(y)) = P(x))) = Vz € X.P(z)

Die Bedingung Yy < z.P(y) ist dann gerade die Induktionsvoraussetzung fiir
P(z) in der Noetherschen Induktion.

Die Noethersche Induktion hat ihren Namen von der Mathematikerin Emmy
Noether erhalten.

Oft wird das Prinzip der Noetherschen Induktion noch allgemeiner fiir wohl-
gegrindete Relationen formuliert (eine Relation ist wohlgegriindet, wenn sie
keine unendlich absteigende Ketten besitzt).

Die Prinzipien der Noetherschen Induktion und der vollstédndigen Induktion
sind sich strukturell sehr dhnlich. Im Induktionsschritt zeigt man fiir jedes
Element, da die Aussage fiir dieses Element gilt, wenn sie fiir alle seine
Vorgéanger gilt. Was man bei der Noetherschen Induktion auf den ersten
Blick vermif}t, ist der Induktionsanfang. Haben wir den Induktionsanfang
vergessen?’

Die Antwort ist, dafl der Induktionsanfang im Induktionsschritt enthalten
ist. Das sieht man, wenn wir ein minimales Element x € X der Ordnung
betrachtenﬂ Per Annahme besitzt x keine Vorgéinger. Dementsprechend ist

1Zur Erinnerung: In der ersten Ubung haben wir gezeigt, daB jede nicht-leere Teilmenge
von X einer wohlgegriindeten Ordnung ein minimales Element enthélt. Deshalb besitzt X
ein minimales Element, wenn X wenigstens ein Element enthélt.
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die Induktionsvoraussetzung Vy < z.P(y) fiir jedes minimales Element eine
triviale Aussage (eine iiber die leere Menge). Fiir ein minimales Element x
ist dementsprechend die Bedingung der Noetherschen Induktion dquivalent
zu P(x). Wir miissen also fiir die minimalen Elemente x die Aussage P(z)
ohne weitere Voraussetzungen beweisen. Das entspricht gerade dem Indukti-
onsanfang.

Beispiel 4.2 |(Euklid)
In Beispiel |3.1| hatten wir bereits den Algorithmus von Euklid zum Berechnen
des grofiten gemeinsamen Teilers zweier Zahlen in unsere Programmierspra-

che IMP formuliert:

while —(x = y) do
T if x <y then y:=y — x
else x:=x —y

Der Einfachheit halber bezeichnen wir dieses Programm mit F fiir Euklid.
Wir werden nun mit Hilfe der Noetherschen Induktion beweisen, dafi dieses
Programm fiir jeden Zustand o mit o(z) > 1 und o(y) > 1 terminiert, d. h.
daf ein Zustand o' mit (£, o) — o’ existiert.

Zunéchst definieren wir die irreflexive Ordnung, {iber die wir die Induktion
ausfithren. Wir definieren X = {o € ¥ | o(z) > 1 Ao(y) > 1}. Die Ordnung
< auf X definieren wie folgt: ¢’ < o gdw. 0'(z) < o(z) und o'(y) < o(y) und
o'(x) # o(z) oder o'(y) # o(y). Die Ordnung (X, <) ist dann wohlgegriindet.
Zunéchst formalisieren wir das Pradikat, das wir dann mit Hilfe der Noether-
schen Induktion beweisen werden:

P(o)=3c" € X.(E,0) — o’
Sei nun o € ¥ beliebig:

Induktionsannahme: Wir nehmen an, daf fiir jedes ¢” < o ein ¢"” mit
(E,0") — o existiert.

Induktionsschritt: Wir beweisen nun, dafl dann auch fiir ¢ ein ¢’ mit
(E,0) — o existiert:
Dazu unterscheiden wir zwei Félle:
1. Fall o(x) = o(y): In diesem Falle gilt (—=(x =y),0) — false. Mit

der 1. Regel fiir die Schleife ist damit (F, o) — o herleitbar. Damit
gilt die zu beweisende Aussage (mit o’ = o).
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2. Fall o(z) # o(y): In diesem Falle gilt (=(x = y), o) — true. AuBer-
dem ist mit den Regeln fiir die Bedingte Anweisung und fiir die
Zuweisung

(if (x <y) then y:= y—x else x:= x—y, o) — ¢

o { alo(y) —o(x)/y] firo(y) > o(x)

olo(z) —o(y)/z] fir o(z) > a(y)

herleitbar. Insbesondere gilt ¢’ € X und ¢” < 0. Wegen In-
duktionsvoraussetzung gilt also P(0”). Es gibt also ein ¢” mit
(E,0") — ¢". Mit der Regel fiir die Schleife konnen wir damit
(E,0) — ¢" herleiten. Damit gilt die zu beweisende Aussage (mit
0_/ — OJ//).

Damit haben wir per Noetherscher Induktion die Aussage P(co) fiir jedes
o € X bewiesen.

In diesem Beispiel hitten wir den Beweis mit Hilfe der Vollstindigen Induk-
tion fithren konnen. Mit Hilfe der Noetherschen Induktion wird der Beweis
aber oft viel einfacher.

2 Induktive Definitionen

Wir haben im Kapitel |3| induktive Definitionen in verschiedenen Formen be-
nutzt: Grammatiken (bzw. die BNF), Regeln und die explizite Form. Hinter
allen diesen Definitionen steckt dasselbe Prinzip:

e Fiir bestimmte Elemente wird gesagt, daf§ sie unbedingt zu der defi-
nierten Menge gehoren.

e Fiir andere Elemente wird gesagt, dal sie unter der Voraussetzung zu
der definierten Menge gehoren, dafl andere Elemente Menge bereits zu
der Menge gehoren.

Der erste Fall entspricht gerade den Axiomen, der zweite Fall entspricht ge-
rade den Regeln (mit mind. einer Voraussetzung).

Um den Begriff der induktiven Definition formal zu fassen, definieren wir dazu
zunéchst den Begriff der Regel bzw. der Regelinstanz. Dabei gehen wir immer
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davon aus, dafl die Regeln auf einer vorgegebenen Menge von ,,potentiellen
Objekten* operieren und die Regeln dann eine Teilmenge davon definieren.
In der Praxis wird diese Menge von , potentiellen Objekten* oft nicht explizit
erwahnt. Fiir die Formalisierung des Begriffes miissen wir diese Menge X, auf
der die Regeln arbeiten, explizit machen.

Definition 4.3 (Regel und Axiom)

Sei X eine Menge. Fiir eine endliche Teilmenge ¥ C X und ein Element
x € X nennen wir das Paar (Y, z) eine Regelinstanz iiber X. Die Elemente
der Menge Y nennen wir die Voraussetzungen der Regel, das Element x
nennen wir die Folgerung der Regel.

Manchmal reden wir auch von der linken und rechten Seite einer Regel.

Eine Regelinstanz (), z) nennen wir Aziominstanz.

Im folgenden werden wir meist nur von Regeln und Axiomen reden, wenn wir
Regelinstanzen und Axiominstanzen meinen. Der Grund fiir die Unterschei-
dung zwischen dem Begriff der Regel und der Regelinstanz ist, daf§ wir bei
der syntaktischen Formulierung einer Regel meist unendlich viele Regelin-
stanzen bezeichnen. Beispielsweise steht die eine Regel bzw. das eine Axiom
iiber Aexp x ¥ x Z aus Abschnitt

(n,o) —n

fiir unendlich viele Regelinstanzen: Fiir jedes n € Z und jeden Zustand o € ¥
ist (0, (n,0,n)) eine Instanz dieser Regel. Um zwischen der syntaktischen Re-
prasentation einer Regel und ihren meist unendlich vielen Instanzen unter-
scheiden zu konnen, haben wir in der obigen Definition iiber Regelinstanzen
geredet. Da wir uns aber iiber die syntaktische Représentation von Regeln
keine weitere Gedanken machen, werden wir im folgenden nur noch von Re-
geln reden, wenn wir eigentlich Regelinstanzen meinen.

Wenn wir nun eine Menge von Regeln (die natiirlich auch Axiome enthalten
kann) angeben, ist nun die Frage, welche Menge durch diese Regeln definiert
wird. Ganz klar sollte die definierte Menge die Regeln respektieren, d.h.
wenn alle Voraussetzungen in der Menge liegen, dann auch ihre Folgerung.
Eine Menge, die diese Eigenschaft besitzt, nennen wir abgeschlossen unter
der Regelmenge, oder kurz R-abgeschlossen, wobei R die Menge der Regeln
bezeichnet:
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Definition 4.4 (Unter einer Regelmenge abgeschlossene Menge)
Sei R eine Menge von Regeln iiber X. Eine Menge () C X heifit abgeschlossen
unter R (kurz R-abgeschlossen), wenn fiir jede Regel(instanz) (Y, z) € R mit
Y C @ auch z € @ gilt.

Offensichtlich enthélt jede R-abgeschlossene Menge all die Elemente, die auf
der rechten Seite eines Axioms auftreten. Denn fiir die linke Seite () eines
Axioms gilt immer ) C @ und damit muf die rechte Seite x in @ liegen. Die
Frage ist nun, ob fiir eine gegebene Regelmenge R iiber X iiberhaupt eine
R-abgeschlossene Menge existiert. Falls sie existiert, miissen wir uns iiber-
legen, ob sie eindeutig ist. Die erste Frage ist einfach zu beantworten, denn
die Menge X ist trivialerweise immer R-abgeschlossen. Und das beantwortet
auch schon fast die zweite Frage: im allgemeinen gibt es mehrere verschiedene
R-abgeschlossene Mengen.

Beispiel 4.3 (Abgeschlossene Mengen)

Wir betrachten die Menge X = {a, b} und die Regeln R = {({a},b), ({b},a)}.
Dann sind die beiden Mengen ) und X abgeschlossen unter R. Die leere
Menge ist fiir diese Regeln R auch R-abgeschlossen, da in ihr kein Axiom
vorkommt. Es muf§ also kein Element unbedingt in die Menge aufgenommen
werden.

Dagegen sind die beiden Mengen {a} und {b} nicht R-abgeschlossen, da die
Regeln verlangen, dafl das jeweils andere Element auch in die Menge gehort.

Man kann sich leicht Beispiele fiir Regelmengen iiberlegen, fiir die noch sehr
viel mehr abgeschlossene Mengen existieren. Die Frage ist nun, welche der R-
abgeschlossenen Mengen die durch die Regelmenge induktiv definierte Menge
sein soll. Die Idee ist, daB wir nur das in die induktiv definierte Menge auf-
nehmen sollten, was unbedingt notig ist — und nicht mehr. Wir sollten also
die kleinste R-abgeschlossene Menge wéhlen. Zuvor miissen wir uns jedoch
davon iiberzeugen, dafl es diese kleinste R-abgeschlossene Menge {iberhaupt
gibt.

Lemma 4.5 (Existenz der kleinsten R-abgeschlossenen Menge)
Sei R eine Menge von Regeln iiber X.

1. Sei nun (Q;);es eine Familie von R-abgeschlossenen Mengen, d. h. fiir
jedes v € I ist @); abgeschlossen unter R. Dann ist auch die Menge
Q = ;s Qi unter R abgeschlossen.

2. Es gibt eine bzgl. Mengeninklusion C kleinste R-abgeschlossene Menge.
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Beweis: Der Beweis von 1. ist einfach. Der Beweis von 2. benutzt 1.

Den Beweis werden wir in der Ubung besprechen.

Zur Erinnerung: Das kleinste Element einer Menge ist, wenn es existiert,
eindeutig.

o1

Da wir nun wissen, daf es fiir jede Regelmenge eine kleinste R-abgeschlossene
Menge gibt, kdnnen wir diese als die induktiv durch R definierte Menge fest-

legen.

Definition 4.6 (Induktiv definierte Menge)

Sei R eine Regelmenge iiber X. Wir nennen die (bzgl. C) kleinste unter R
abgeschlossene Menge die durch R induktiv definierte Menge. Wir bezeichnen

diese Menge mit [g.

Oft liest man bei induktiven Definitionen den Zusatz ,nichts sonst ist in der
Menge“. Das ist gemdifl der obigen Definition — und dem in der Mathematik
iblichen Verstindnis von induktiven Definitionen — tberflissig (oder sogar
unsinnig). Denn wenn man eine Menge induktive definiert, dann ist die klein-
ste R-abgeschlossene Menge gemeint; und die enthdlt keine ,tberflissigen
Elemente.

Beispiel 4.4 (Induktive Definitionen)
1. In Kapitel

haben wir bereits einige Beispiele fiir induktive Defini-

tionen kennen gelernt. Allerdings haben wir dort die Menge X nicht
explizit benannt und die Regeln mehr oder weniger explizit angegeben.

Zur Ubung kénnen Sie sich ja mal diberlegen, wie die Menge X und die
zugehorigen Regelinstanzen aussehen.

2. Sei A eine beliebige Menge und — eine bindre Relation iiber A. Wir

definieren nun die folgende Regelmenge iiber A x A:
R= {(®(a,a)|a€c AU
{(0,(a,b)) | a — b} U
{({(a,0),(b,c)},(a,c)) | a,b,c € A}

Dann bezeichnet die durch diese Regeln induktiv definierte Menge ge-

rade die reflexiv-transitive Hiille von —, d. h. Ir =—".
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Die Regelinstanzen der ersten Zeile driicken die Reflexivitdt aus. Die
Regelinstanzen der zweiten Zeile driicken aus, da8 jeder Ubergang von
— auch zu Ip gehort. Die Regelinstanzen der dritten Zeile driicken die
Transitivitat aus.

Da Iy die kleinste R-abgeschlossene Menge ist, werden zu I gerade die
fiir die reflexiv-transitive Hiille nétigen Ubergénge hinzugenommen.

Die Definition definiert uns zwar eindeutig die Menge [g. Sie liefert uns
aber kein Verfahren, um an die Elemente dieser Menge heranzukommen.
Wir werden nun eine weitere Charakterisierung von Ip angeben, die es uns
erlaubt, die Elemente von I systematisch zu generieren. Die Idee ist recht
einfach: Wir beginnen mit der leeren Menge und nehmen schrittweise die Ele-
mente dazu, die man mit Hilfe der Regeln aus den bisher abgeleiteten Elemen-
te ableiten kann. Im ersten Schritt sind das nur die Folgerungen der Axiome,
da die ja keine Voraussetzungen benotigen. Im zweiten Schritt konnen wir
dann schon mehr ableiten. Natiirlich kann es sein, dafl dieser Iterationsprozef3
nie endet. Aber im Laufe des Interationsprozesses kommen nach und nach
alle Elemente von Ir dazu.

Fiir eine Regelmenge R iiber X sieht diese Iteration wie folgt aus:

Q = 0

Q1 {xe X |(0,z) € R}

Q2 {reX|Y,z)e RY CQ:}
Qs = {zeX[(Y,2) e R)Y CQs}

I
m>g> o)
O

Die Menge Iy ergibt sich dann als Vereinigung aller Q;, d.h. I = [,y Qi-

Dabei definiert die Operation R genau einen Ableitungsschritt: R(Q) ist die-
jenige Menge von Elementen, die man in einem Schritt aus ) ableiten kann.

Definition 4.7 (Ableitungsschritt &)
Sei R eine Menge von Regeln iiber X. Die Abbildung R : 2¥ — 2% ist wie
folgt definiert:

R(Q)={zeX|3Y CQ.(Y,z) € R}

Die Elemente von E(Q) heiflen die in einem Schritt mit R aus @) ableitbaren
Elemente.
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Mit Hilfe des E—Opemtors kdonnen wir jetzt noch einfacher formulieren, wann
eine Menge Q unter R abgeschlossen ist, nimlich genau dann, wenn R(Q) C

Q gilt.

Wir kénnen nun unsere obigen Uberlegungen als Satz formulieren:

Satz 4.8
Sei R eine Regelmenge iiber X und sei die Folge von Teilmengen )y, @1, Qo, . . .
wie folgt definiert:

® Q=10
o Qi1 =R(Q;) firieN
Dann gilt Ir = (J;cy @i und Ig ist ein Fixpunkt von ﬁ, d.h. E(IR) = Ip.

Beweis: Ausfiihrlich werden wir diesen Satz in den Ubungen beweisen. Hier
sind die wesentlichen Schritte des Beweises:

1. Der Operator R ist monoton (steigend), d.h. fiir alle Mengen () und
Q' mit Q C Q' gilt R(Q) € R(Q)).

2. Die Folge Qq, @1, Qo, ... bildet eine aufsteigende Kette beziiglich C,
d. h. fiir jedes i € N gilt Q); C Q;11.

3. Die Menge Q = [J;cy Qi ist é—abgesehlossen.

4. Fiir jedes Q); und jede R-abgeschlossene Menge Q" gilt @; C Q)'.

5. @ ist die kleinste unter R abgeschlossene Menge.

6. Ir ist Fixpunkt von R.

Aus der Definition von Ir wissen wir, daff Ir beziiglich Mengeninklusion
Kleiner ist als jede R-abgeschlossene Menge @ (d.h. als jede Menge mit
E(Q) C Q. Insbesondere ist I kleiner als jeder Fizpunkt QQ von R (d. h.
als jede Menge Q mit R(Q) = Q). Das heifit, dafy Ir der (beziiglich Men-
geninklusion) kleinste Fixpunkt von R ist. Wir haben damit also ganz neben-
bei gezeigt, daf R immer einen kleinsten Fizpunkt besitzt.
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Tatsdchlich ist der obige Satz bereits der Fizpunktsatz von Kleene (oder eine
speziellen Ausprigung davon). Wir werden diesen Satz spiter beweisen. Der
Beweis des Fizpunktsatzes von Kleene folgt exakt dem gleichen Muster.

Auch wenn der Beweis des Satzes insgesamt recht elementar ist, ist der Satz
nicht ganz trivial. Denn wenn wir Regelinstanzen mit unendlich vielen Vor-
aussetzungen zulassen wiirden, dann wirde der Satz in dieser Form mnicht
gelten. Wer findet ein Gegenbeispiel?

3 Regelinduktion

Im vorangegangen Abschnitt haben wir gesehen, wie man Mengen induktiv
definieren kann. Die Frage ist nun, wie man Eigenschaften der Elemente ei-
ner induktiv definierten Menge beweisen kann. Dies geht ganz analog zur
Vollstandigen Induktion. Wir miissen die Eigenschaft fiir jedes Element be-
weisen, das aufgrund eines Axioms in die Menge aufgenommen wird. Aufler-
dem miissen wir beweisen, daf fiir jede Regel die Eigenschaft fiir die Fol-
gerung (d.h. die rechte Seite der Regel) gilt, wenn die Eigenschaft fiir alle
Voraussetzungen (d. h. alle Elemente auf der linken Seite der Regel) gilt. Die-
ses Prinzip wird Induktion tiber die Regeln oder kurz Regelinduktion genannt.

Wie bei der Noetherschen Induktion kénnen wir den Induktionsanfang im
Induktionsschritt ,,verstecken®, da die Axiome spezielle Regeln ohne Voraus-
setzung sind.

Prinzip 4.9 (Regelinduktion)

Sei R eine Menge von Regeln iiber X und P ein Pradikat iiber X. Wenn fiir
jede Regel (Y, x) € R, fiir die fiir jedes y € Y das Pradikat P(y) gilt, auch
das Préadikat P(x) gilt, dann gilt das Pradikat P(z) fiir jedes z € Ig, d.h.
fiir jedes Element der durch R induktiv definieren Menge.

Wir kénnen das Prinzip der Regelinduktion auch kurz wie folgt formulieren:
(V(Y,z) € R((Vy € Y.P(y)) = P(x))) = Vz € Ig.P(2)
Eine weitere Formulierung ist die folgende:
VY, z) e R(YCP=2€P)=IzgCP
Beweis: Das Prinzip der Regelinduktion kénnen wir mit Hilfe von Satz

auf das Prinzip der vollstindigen Induktion zuriickfithren: Sei also R eine
Regelmenge, fiir die fiir jede Regel (Y, x) € R mit Y C P auch x € P gilt.
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1. Aus der Definition des E—Opera‘g\ors folgt unmittelbar, dafl dann fiir
jede Teilmenge @ C P auch gilt R(Q) C P.

2. Gemal Satz 148t sich die Menge I wie folgt durch die Folge von
Mengen Qq, @1, ... mit

e Qo =
o Qi1 =R(Q;) firieN

charakterisieren: Ip = UieN Q;.

3. Offensichtlich gilt Qo = ® C P. Durch vollstindige Induktion kénnen
wir nun unter Anwendung von 1. zeigen, daf fiir jedes ¢ € N gilt Q); C P.
Da jedes einzelne @); in P enthalten ist gilt dann auch (|J;.y Qi) € P;
also gilt Ir C P.

4

Das Prinzip der Regelinduktion kénnen wir nun anwenden, um Eigenschaften
der Elemente einer induktiv definierten Menge zu beweisen. Indirekt zeigen
wir auf diese Weise auch, daf§ bestimmte Elemente nicht in der induktiv de-
finierten Menge vorkommen: namlich genau die Elemente, die die bewiesene
Eigenschaft nicht besitzen. Dazu betrachten wir ein Beispiel.

Beispiel 4.5
Im Beispiel 3.5 in Kapitel |3| auf Seite [36| haben wir bereits informell argu-

mentiert, dafl es fiir die Anweisung w = while true do skip keine Zustédnde
o,0" € 3 gibt, fiir die sich (w,0) — ¢’ ableiten 148t. Wir werden dies nun
mit Hilfe der Regelinduktion beweisen. Dazu miissen wir uns zunéchst ein
Pradikat iiberlegen, das wir mit Hilfe der Regelinduktion beweisen kénnen:

P({c,0) = d')=cZw

d.h. wir zeigen, daf fiir jeden Tripel (c¢,0) — o', den wir aus den Regeln
herleiten kénnen, die Anweisung c¢ definitiv nicht unsere Endlosschleife w ist.
Wir beweisen die Giiltigkeit des Pradikats nun fiir alle gem&fl der Regeln
herleitbare Tripel (¢, o) — ¢’ durch Induktion tiber die Regeln:

(skip,o) — o
Offensichtlich gilt skip # w.
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(a,0) = n
(vi=a,0) — a[n/v)
Offensichtlich gilt v:= a # w.

fiir alle Regeln bis auf die Regeln fiir die Schleife gilt die Aussage analog.
Wir miissen also nur noch die Regeln fiir die Schleife w betrachten.

(true, o) — false
(while true do skip ¢,0) — o
Fiir diese Regel ist die Voraussetzung (true, o) — false verletzt. Es ist
also nichts zu zeigen.

(b,o) — true (skip,o) — ¢” (while true do skip, o”) — o’

(while true do skip, o) — o’
Da fiir die Voraussetzung (while true do skip, ¢”) — ¢’ das Préadikat
nicht erfiillt ist, miissen wir fiir diese Regel nichts zeigen.

Hier stellen wir das informelle Argument, dafi die Konstruktion ei-
ner Herleitung fiir (while true do skip,c”) — o' niemals terminieren
wiirde, vom Kopf auf die Fisse: Wir beweisen den Induktionsschritt fir
diese Regel, indem wir die Ungiiltigkeit der Induktionsvoraussetzung fir
diese Regel zeigen. Das ist sicher etwas ungewdhnlich, aber es ist kor-
rekt.

4 Herleitungen

Bei der Definition des Begriffs der induktiv durch eine Regelmenge definier-
ten Menge haben wir zur Motivation informell den Begriff der Ableitbar-
keit und den Begriff der Herleitung benutzt. Insbesondere ist die alternative
Charakterisierung der induktiven Mengen in Satz durch die schrittweise
Ableitbarkeit der Element motiviert.

Jetzt sind wir dazu in der Lage, diesen Begriff formal zu definieren — und
zwar durch eine induktive Definition. Wir ziehen uns also fast an den ei-
genen Haaren aus dem Sumpf. Da wir den Begriff der Herleitung bei der
formalen Definition der induktiv definierten Menge nicht benutzt haben, ist
unser Vorgehen aber formal sauber.

Formal ist eine Herleitung ein Baum, an dessen Wurzel das hergeleitete Ele-
ment steht. Die Verzweigungen im Baum entsprechen dabei den Regeln. Um
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eine aufwendige graphische Notation zu vermeiden, definieren wir eine Her-
leitung technisch als ein Paar ({di,...,d,},x), wobei dy,...,d, Teilherlei-
tungen sind und z das hergeleitete Element. Um den Aspekt der Regelan-
wendung besser zum Ausdruck zu bringen benutzen wir anstelle des Kommas
den Schréigstrich: ({dy,...d,}/z). Wenn d eine Herleitungf] fiir « ist, schrei-
ben wir d Fr = (gesprochen ,d leitet x her”). Dabei lassen wir den Index R
meist weg, wenn R aus dem Kontext hervor geht.

Definition 4.10 (Herleitung)
Sei R eine Regelmenge iiber X. Wir definieren die Relation - induktiv durch
die folgenden Regeln R':

e Fiir jedes Axiom (), z) € R ist

(0/x) Fr
eine Regel aus R'.
e Fiir jede Regel ({z1,...,2,},2) € R ist

dll_RfL’l dnl_Rxn
({dy,...,d,}/z) FRr 2

eine Regel aus R'.

Wenn d Fg x in der durch R’ induktiv definierten Menge liegt, sagen wir,
daBl d eine Herleitung fiir x ist.

Durch diese Regeln werden die Herleitungsbdume in Form von ,,Klammerge-
birgen* codiert. Fiir die Definition der Herleitung ist dies praktisch. Wenn
wir aber iiber Herleitungen reden wollen, ist dies eher unpraktisch. Dann
benutzen wir die Notation wie wir sie in Kapitel [3| in Abschnitt [3| benutzt
haben (z. B. in Beispiel [3.4).

Wenn unsere Definition der induktiven Mengen und der Herleitung verniinf-
tig sind, sollte nun gelten, dafl die Elemente der durch die Regeln induktiv
definierten Menge genau die Elemente sind, fiir die eine Herleitung existiert.
Formal formulieren wir das wie folgt:

’Im Englischen heilt Herleitung derivation. Deshalb bezeichnen wir Herleitungen im
folgenden mit dem Zeichen d.



o8 KAPITEL 4. INDUKTIVE DEFINITIONEN UND BEWEISE

Lemma 4.11 (Induktive definierte Menge und Herleitung)
Sei R eine Regelmenge. Dann gilt © € Iz genau dann, wenn ein d mit d bz x
existiert.

Beweis: Regelinduktion. Ein genauer Beweis wird in der Ubung besprochen.

Fragen: Uber welche Regeln geht die Regelinduktion? Wie genau ist das Prdi-
kat formuliert, fiir das wir die Regelinduktion anwenden?

4

Wenn es eine Herleitung d fiir ein Element = gibt, schreiben wir auch 5 =z,
bzw. wenn R aus dem Kontext hervorgeht auch F z. Die Aussagen x € Ig
und Fx z sind dann gleichbedeutend. In der Literatur wird meist Fg x bzw.
F x verwendet.

Das vorangegangene Lemma besagt nur, dafl es fiir jedes Element einer in-
duktiv definierten Menge mind. eine Herleitung gibt. Es kann jedoch sein,
daB es fiir manche Elemente mehrere verschiedenen Herleitungen gibt. In der
Praxis versucht man aber meist, induktive Definitionen so zu formulieren,
daB es eine eindeutige Herleitung fiir jedes Element gibt. Um das zu formali-
sieren, formulieren wir nun den Begriff der eindeutigen induktiven Definition.

Definition 4.12 (Eindeutige induktive Definition)

Die durch eine Regelmenge R induktive definierte Menge heifit eindeutig
induktiv definiert, wenn fiir jedes x € Iz genau eine Herleitung d mit d -z x
existiert.

Zur Ubung sollte Sie sich einmal iberlegen, welche der Regelmengen aus
Kapitel[3 eindeutige induktive Definitionen sind und welche nicht. Besonders
interessant sind die Regeln fiir das Auswerten der booleschen Ausdriicke.

Oft werden induktive Definitionen nur dann induktiv genannt, wenn sie ein-
deutig sind. Insbesondere bei der Definition von syntaktischen Mengen legt
man Wert auf die Eindeutigkeit der Definition (vgl. Diskussion zur abstrak-
ten Syntax in Kapitel [3[ in Abschnitt . Um den Begriff der eindeutigen
induktiven Definition zu bilden, ist es aber zweckméfig zunéchst den Begriff
der induktiven Definition zu bilden, und dann die eindeutigen als Spezialfall
zu charakterisieren.

Wenn eine induktive Definition eindeutig ist, kann man (totale) Abbildungen
von [ in irgendeine Menge Y induktiv tiber den Aufbau der Menge Ip defi-
nieren. Dazu betrachten wir einige Beispiele von Abbildungen, die wir spéter
noch mehrfach benutzen werden.
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Beispiel 4.6 (Definitionen induktiv iiber den Aufbau einer Menge)
1. Fiir die Menge der arithmetischen Ausdriicke Aexp definieren wir die

2. Die Abbildung assign :

Lange induktiv iiber den Aufbau: length : Aexp — N ist definiert durch:

length(n) =

length(v) =

length(ag + al) = length(ao) + length(ap) + 1
(
(

length(ag — a1) = length(ag) + length(ag) + 1
length(ag * a1) = length(ag) + length(ag) + 1

Formal konnte man die Abbildung durch die folgenden Regeln definieren:

(n,1) (v,1)

(ao,no) ((11,77,1) (ao,no) ((11,77,1)
(a0+a1,n0—|—n1 -‘1-1) (ao—al,no—i-nl + 1)

(ag,n0) (ar,m1)
(apxar,ng +mn1 + 1)

Die dadurch definierte Relation length C Aexp X N ist eine totale Ab-
bildung, da die Definition der arithmetischen eindeutig ist (dies miifSte
man aber eigentlich beweisen).

Com — 2V, die jeder Anweisung die Menge

derjenigen Variablen zuordnet, an die ein Wert zugewiesen wird, ist

induktiv definiert durch:

e assign(skip) =

e assign(v:i=a) = {v}

(sk
(

e assign(cy; c1) = assign(co) U assign(cy)

e assign(if b then ¢ else ¢;) = assign(cy) U assign(cy)
(

e assign(while b do ¢) = assign(c)

Wir verzichten hier darauf, das Prinzip der Definition einer totalen Abbil-
dung induktiv iber den Aufbau der Menge zu formalisieren. Das erste Beispiel
sollte einen guten Findruck davon geben, wie das geht. Die Formalisierung
und der Beweis, dafi die so definierte Relation fiir jede eindeutig induktiv
definierte Menge eine totale Abbildung ist, ist eine einfache Ubungsaufgabe.
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Weitere Beispiele fiir Definitionen induktiv iiber den Aufbau ist die Aus-
wertung der arithmetischen Ausdriicke und der booleschen Ausdriicke. Die
Semantik der Anweisungen dagegen ist keine Definition induktiv iiber den
Aufbau! Warum wohl?

5 Zusammenfassung

In diesem Kapitel haben wir die Konzepte der induktiven Definition und
des induktiven Beweisens formalisiert, die wir in Kapitel 3] benutzt haben,
um die operationale Semantik der Programmiersprache IMP zu definieren.
Methodisch hétten wir diese Definitionen vor der Definition der operationalen
Semantik einfiithren miissen.

Aus didaktischen Griinden haben wir die Konzepte erst nach Threr Anwen-
dung eingefiihrt. Generell stellt sich die Frage, ob wir (im Rahmen der Vorle-
sung Semantik) diese Konzepte formalisieren sollten, oder ob wir diese Kon-
zepte als gemeinsame Pragmatik voraussetzen. Der Hauptgrund, diese Kon-
zepte hier zu formalisieren, ist, dafl auf dieser Ebene spéter deutlich wird, daf3
die mathematische und die operationale Ebene weit weniger unterschiedlich
sind, als man zunéchst erwarten wiirde. Ein weiterer Grund ist, ein Bewuf3t-
sein dafiir zu schaffen, dafl in der Informatik fast iiberall nur mit Wasser
gekocht wird, wobei das Wasser die Konzepte des induktiven Definierens
und Beweisens sind.



Kapitel 5

Mathematische Semantik

In diesem Kapitel werden wir nun eine weitere Technik zur Definition der
Semantik einer Programmiersprache vorstellen: die mathematische bzw. de-
notationale Semantik. Aulerdem werden wir Techniken kennenlernen, um die
Aquivalenz verschiedener Semantiken zu beweisen.

1 Motivation

Bevor wir die mathematische Semantik fiir die Programmiersprache IMP
definieren, betrachten wir zur Motivation nochmal kurz die operationale Se-
mantik von IMP. Durch die Tripel

(a,0) = n
(byo)y — t
(c,0) — o

wird einem Ausdruck in einem gegebenen Zustand o ein Wert zugeordnet.
Einer Anweisung ¢ wird fiir einen gegebenen Zustand o der Endzustand o’
zugeordnet, in dem die Anweisung terminiert, falls sie terminiert.
Eigentlich haben wir damit nicht den Ausdriicken bzw. den Anweisungen eine
Semantik zugeordnet, sondern jeweils nur einem Ausdruck bzw. einer Anwei-
sung zusammen mit einem Zustand o. Bisher haben wir also Abbildungen
der folgenden Struktur

(Aexp x ¥) — Z

61
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(Bexp x ) — B
(Com x X) = %
definiert. Was wir eigentlich wollen sind Abbildungen der folgenden Struktur:
A Aexp — (X — Z)
B : Bexp — (X — B)
C:Com— (X —Y)

Dabei soll A jedem arithmetischen Ausdruck seine Semantik zuordnen: eine
Abbildung ¥ — Z, die fiir jeden Zustand den Wert zuriickliefert, zu dem
der Ausdruck in diesem Zustand ausgewertet wird. Entsprechendes gilt fiir
B und die booleschen Ausdriicke. Die Abbildung C ordnet jeder Anweisung
¢ eine partielle Abbildung (X — ) zu, die den Zusammenhang zwischen
dem Anfangszustand und dem Endzustand bei Ausfiihrung der Anweisung
herstellt.

Natiirlich ist es kein Problem, die Abbildungen A, B und C mit Hilfe der
operationalen Semantik punktweise zu deﬁnierenﬂ Beispielsweise kénnen wir
die Abbildung C punktweise wie folgt definieren:

C(c)(o) =o' falls (c,0) — 0o

Da die Schreibweise C(c)(o) etwas gewohnungsbediirftig ist, und um zu be-
tonen, das C(c) die Semantik von ¢ bezeichnet, benutzen wir bei der Anwen-
dung der Abbildung C auf eine Anweisung c¢ die ,,Semantikklammern*, d. h.
wir schreiben C[¢] anstelle von C(c). Dabei ist C[[¢] eine partielle Abbildung
Y=

Auf diese Weise konnten wir also die mathematische Semantik der Ausdriicke
und Anweisungen mit Hilfe der operationalen Semantik unmittelbar formu-
lieren. Allerdings geht es bei der Definition der mathematischen Semantik
nicht nur darum, die Semantik, d.h. die Abbildungen A, B und C zu defi-
nieren! Es geht auch darum, wie diese Abbildungen definiert werden. Man
mochte ndmlich, daf die Semantik eines syntaktischen Konstruktes nur mit
Hilfe der Semantik der Teilkonstrukte definiert wird. Beispielsweise kénnen

'Die Umwandlung einer Abbildung der Form (Aexp x ¥) — Z in die Form Aexp —
(X — Z) bezeichnet man nach dem amerikanischen Logiker Haskell Curry auch Currysie-
rung bzw. engl. currying.
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wir die Semantik der sequentiellen Ausfiithrung cq; c¢; allein mit Hilfe der
Semantik der Teilkonstrukte ¢y und c¢; definieren:

Clco; 1] = Cler] o Cleo]

Dabei ist o die Funktionskomposition. Letztendlich wollen wir also die Se-
mantik der Anweisungen induktiv iiber den Aufbau der Anweisungen defi-
nieren; wenn man bei der Definition einer Semantik eines Konstrukts nur auf
die Semantik seiner Teilkonstrukte Bezug nehmen muf}, nennt man das eine
kompositionale Semantik.

Das Problem bei der operationalen Semantik ist, daf} sie nicht induktiv iiber
den Aufbau der Anweisungen definiert ist, da in der zweiten Regel fiir die
Schleife in der Voraussetzung die Schleife selbst wieder vorkommt. Die Frage
ist also, wie sich C[while b do ¢] allein mit Hilfe von B[[b] und C[¢] definie-
ren laft. Und damit beschéftigen wir uns im Rest diese Kapitels (insbes. in
Abschnitt [3)).

2 Semantik fiir Ausdriicke

Die Definition der Semantik der arithmetischen und booleschen Ausdriicke
ist nicht weiter schwierig, da bereits die operationale Semantik kompositional
ist. Der Vollstandigkeit halber geben wir diese Definitionen hier trotzdem an
und nutzen die Gelegenheit, uns an einige Notationen zur Definition von
Abbildungen zu gewthnen.

Definition 5.1 (Mathematische Semantik fiir arithmetische Ausdriicke)
Wir definieren die Abbildung A : Aexp — (X — Z) induktiv {iber den
Aufbau der arithmetischen Ausdriicke:

e A[n] =Xo €Xn

o Afv] = Xo € X.0(v)

o Afap+ai] = do € X.(Afao] (o) + Aa1] (o))
o Afag—a1] = Ao € .(Afac](c) — Afas] (o))
o Afagxa] = Ao € X.(A[ao] (o) - Alai] (o))

Fiir einen arithmetischen Ausdruck a nennen wir Afa] die (mathematische)
Semantik von a.
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In der vorangegangenen Definition haben wir die ,Lambda“-Notation benutzt,
um die Abbildungen Ala] kompakt zu definieren. Wir hdtten diese Abbil-
dungen auch wie folgt durch unsere Relationsschreibweise definieren kinnen.
Allerdings hdtten wir dann — streng genommen — beweisen miissen, dafl die
derartig definierten Relationen totale Abbildungen sind.

o Aln] = {(o,n) |0 € 2}
Alv] ={(o,0(v)) | o0 € £}
Alag+a1] = {(o,n0 +n1) | 0 € X, (0,n0) € Afao], (o,n1) € Afa1]}
Alag—ai] = {(o,n0 —n1) | 0 € &, (0,n0) € Alao], (o,n1) € AJa1]}
Alaog*a1] = {(o,n0 - n1) | 0 € X, (0,n0) € Afag], (o,n1) € AJa1]}

Die Semantik fiir den Ausdruck 3 + (5 * x) ergibt sich dann beispielsweise
wie folgt:

o A[3] = o € X.3
e A[5] = o € X5
e A[x] =)Mo € X.0(x)

o A[5 % x| =)Mo € E.((Aog € £.5)(0) - (Ao € X.0(x))(0))
Diesen A-Ausdruck konnen wir vereinfachen zu:
Ao € 3.5 0(x)

e A[3+(5xx)] =X € X.(( Mg €X.3)(0)+ (Ao € X.(5-0(x)))(0))
Diesen Ausdruck kénnen wir vereinfachen zu:
Ao e X3+ (5-0(x))

Also gilt A[3 4+ (5 *xx)] = Ao € .3+ (5-0(x))). Auf einen konkreten
Zustand o mit beispielsweise o(x) = 7 koénnen wir dann die Abbildung
A[3 + (5 * x)] wie folgt anwenden: A[3 + (5 * x)](0) = (Ao € X.(3+ (5 -
ocx))))(o)=3+(5-0(x))=3+(5-7) = 38.

Entsprechend konnen wir nun die mathematische Semantik fiir boolesche
Ausdriicke definieren, wobei wir davon ausgehen, dafl die Relationen und
Operationen =, <, =, A und V semantisch bereits definiert sind:

Definition 5.2 (Mathematische Semantik fiir boolesche Ausdriicke)
Wir definieren die Abbildung B : Bexp — B induktiv iiber den Aufbau der
booleschen Ausdriicke:
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e B[true] = Ao € X.true

B[ false] = Ao € X.false

Blag=a:] = Ao € .(Alag] (o) = AJar] (o))

Wir kinnten diese Abbildung auch wie folgt mit Hilfe der Relationen-
schreibeweise definieren:

{(o,true) | 0 € XA Afag](c) = Afa1] (o)} U

{(o,false) | 0 € XA Afap](c) # Afa1](o)}

Blag<ai] = Ao € X.(Afao] (o) < Afaq] (o))

B[~ b] = Ao € Z.(-B[b] (o))

BlboAbi] = Ao € E.(Bbo] (o) A B[b] (o))
o B[boVbi] = Ao € =.(B[bo] (o) V B[b:](0))

Fiir einen booleschen Ausdruck b nennen wir B[[b] die (mathematische) Se-
mantik von b.

Wir haben nun zwei verschiedene Semantiken fiir Ausdriicke definiert: die
operationale Semantik und die mathematische Semantik. Natiirlich sollten
diese Semantiken im Ergebnis iibereinstimmen. Da beide ganz analog defi-
niert sind, kann man das auch recht einfach beweisen.

Lemma 5.3 (Aquivalenz der Semantiken fiir Ausdriicke)
1. Fiir jeden arithmetischen Ausdruck a, jeden Zustand ¢ und jede Zahl
n gilt
(a,0) = n gdw. Afa](o)=n

2. Fiir jeden booleschen Ausdruck b, jeden Zustand o und jeden Wahr-
heitswert ¢ gilt

(byo) —t gdw. B[b](c) =t

Beweis: Induktion iiber den induktiven Aufbau der Ausdriicke. Im Detail
ist der Beweis lang aber langweilig. O
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3 Semantik fiir Anweisungen

In diesem Abschnitt definieren wir die mathematische Semantik fiir Anwei-
sungen. Bevor wir die Semantik formal definieren, sollten wir uns zunéchst
erst einmal klar machen, worin das Problem besteht. Dazu beginnen wir mit
einer naiven Definition der Semantik — und fallen am Ende auf die Nase. Fiir
jede Anweisung ¢ definieren wir dazu induktiv iiber den Aufbau die partielle
Abbildung C[c] : ¥ — ¥, wobei C[c](c) = o’ bedeutet, dafl die Anweisung c
im Zustand ¢’ terminiert, wenn sie im Zustand o gestartet wird:

e C[skip] =idys = )Xo € Z.0
o Clv:i=a] = Ao € X.0[A[a](0)/v]
Cleo; 1] = Cfer] o Cfeo]

Zur Erinnerung die Funktionskomposition f o g ist bei uns definiert

durch (f o g)(x) = f(g(z)).

Cleo] (o) falls B[b](o) = true
Cler] (o) falls B[b](o) = false

C[if b then ¢ else ¢;] = Ao € X. {

Wir kénnten auch schreiben C[if b then ¢y else ¢1] = {(0,0’) € ¥ x
Y | B[b](o) = true A (o,0") € Cleo]} U {(0,0") € ¥ x X | B[b](o) =
false A (0,0') € C[e1]} Beide Definitionen bedeuten dasselbe. Welche
Notation wir wihlen ist eine Frage der Gewdohnung und eine Frage der
Addquatheit. In der ersten Variante sieht man jedoch sofort, dafl es sich
um die Definition einer partiellen Abbildung handelt.

Aus der Definition der operationalen Semantik wissen wir bereits, daf3
gilt: while b do ¢ ~ if b then "¢; while b do ¢ J else skip. Diese
Aquivalenz kénnen wir nun zur Definition der Semantik der Anwei-
sung while b do ¢ ausnutzen. Wir definieren:

C[while b do ¢] = C[if b then "c¢; while b doc J else skip] =

o falls B[b] (o) = false
AT € 2. { C[while b do c|(C[c](c)) falls B[](c) = true

Soweit der naive Versuch, die mathematische Semantik C fiir Anweisungen zu
definieren. Leider hat diese Definition einen massiven Fehler; denn in der De-
finition von C[while b do ¢] taucht bereits C[while b do ¢] auf. Deshalb ist
der obige ,, Versuch einer Definition“ keine mathematische Definition. Denn
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in einer mathematischen Definition darf der zu definierende Begriff nicht be-
nutzt, werden um den Begriff zu bilden. Eine solche Definition (auch wenn
man sie manchmal sieht) ist falsch; noch schlimmer: sie ist nicht einmal eine
Definition. Im Rest dieses Abschnitts werden wir uns nun darum bemiihen,
wie wir diese Selbstbeziiglichkeit in der Definition von C[while b do c] los
werden.

Eine &hnliche Selbstbeziiglichkeit haben wir bereits bei der Definition der
operationalen Semantik fiir die Schleife gesehen. Denn in der Regel fiir die
Schleife tritt dieselbe Anweisung in der Voraussetzung auf. Allerdings konn-
ten wir solchen Regeln trotzdem die durch sie definierte induktiv definierte
Semantik zuordnen. Dafl das wirklich gut geht, haben wir uns in Kapitel
iiberlegt. Bei der Definition der mathematischen Semantik ist die Losung die-
ses Problems scheinbalﬂ etwas schwieriger als bei der operationalen Semantik,
da wir die mathematische Semantik einer Anweisung ¢ immer am Stiick de-
finieren miissen und die Abbildung C[¢] nicht punktweise fiir jeden Zustand
o definieren diirfen, wie wir das bei der operationalen Semantik getan haben.

Um uns der Losung des Problems zu ndhern, betrachten wir das Problem der
obigen Definition auf einer etwas abstrakteren Ebene. Der Fehler, den wir in
der Definition gemacht haben besteht darin, dafl wir ein mathematisches Ob-
jekt x (im obigen Beispiel eine Abbildung) definiert haben, wobei x in seiner
eigenen Definition vorkam. Kurz gesagt haben wir geschrieben x = f(z). Vie-
le Informatiker haben mit einer solchen Definition gar kein Problem. Denn
sie meinen, dafl man diese Definition , rekursiv® interpretieren kann. Das ist
aber bei einer mathematischen Definition nicht zulédssig. Abgesehen davon,
dafl die Mathematik kein , eingebautes Konzept“ von Rekursion besitzt (eine
solche Definition ist und bleibt in der Mathematik Unsinn), sind wir ja gera-
de dabei, die mathematischen Grundlagen der Semantik und damit auch die
Grundlagen fiir die Rekursion zu legen — und dazu diirfen wir natiirlich das
Konzept der Rekursion nicht benutzen. Deshalb miissen wir dieses Problem
auf andere Weise 16sen.

Tatséchlich liegt die Losung des Problems schon fast auf der Hand. Denn
wenn die Abbildung f definiert ist, sind damit auch all diejenigen Elemente
x definiert fir die gilt z = f(x): die Fizpunkte von f. Die Interpretation der

2Wenn wir unsere Losung am Ende nochmal ansehen, werden wir feststellen, dafl es
genau dieselbe Losung ist wie bei der operationalen Semantik — sie ist nur etwas anders
verpackt.
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,Definition“ x = f(z) konnte also sein, daf§ wir dasjenige = meinen, das die
Gleichung x = f(z) 16st, d. h. ein Fixpunkt von f ist. Allerdings gibt es bei
dieser Interpretation noch zwei Probleme:

1. Es kann sein, daf§ f gar keinen Fixpunkt besitzt. Das gilt zum Beispiel
fir Az € N.z+1 oder fiir \x € B.—~z. Dann existiert das durch x = f(z)
definierte Objekt nicht.

2. Es konnte auch sein, dafl f mehrere Fixpunkte besitzt. Das gilt zum
Beispiel fiir die Identitédtsfunktion oder auch fiir die Abbildung Az €
N.z - x.

In beiden Fillen diirfen wir nicht iiber , dasjenige z“ reden, fiir das x = f(x)
gilt. Die Formulierung ,,dasjenige x welches®“ diirfen wir nur benutzen, wenn
wir wissen, daf8 das bezeichnete Objekt existiert und eindeutig istf’} Wenn es
mehrere Fixpunkte gibt, kann man allerdings versuchen, unter allen Fixpunk-
ten einen auszuzeichnen — beispielsweise den kleinsten bzgl. einer Ordnung.
Dann mufl man aber zuvor zeigen, daf§ der kleinste Fixpunkt existiertf_f].

Nach diesen allgemeinen Voriiberlegungen betrachten wir die obige Definition
von C[while b do ¢] etwas genauer. Offensichtlich geht in diese Definition
die Semantik der Bedingung b, d. h. B[[b], die Semantik des Schleifenrumpfes
¢, d.h. C[c], und die Semantik der Schleife selbst ein. Wir ersetzen nun
B[b] durch 3, C[¢] durch v. Fiir die Semantik der Schleife selbst schreiben
wir &, weil das die Unbekannte ist, nach der wir noch suchen. Mit diesen
Bezeichnungen sieht unsere obige Gleichung wie folgt aus:

B o falls B(o) = false
c{=hoex. { E(v(o)) falls B(o) = true

Die rechte Seite dieser Gleichung kénnen wir als eine Abbildung F in den drei
Parametern 3, v und ¢ auffassen. Die Gleichung kénnen wir dann kompakt
schreiben als £ = F(3,7,¢). Da wir zunéchst § und ~ festlegen und dann
eine Losung der Gleichung fiir € suchen, verbannen wir die Parameter 3 und
7 in den Index der Abbildung und schreiben Fj,(§) anstelle von F(83,7,§).
Dabei bildet Fj3, eine eine partielle Abbildung ¥ — ¥ auf eine partielle
Abbildung > — ¥ ab.

3Dieser und viele weitere Tips zum mathematischen Formulieren von Gedanken finden
sich in dem sehr empfehlenswerten Buch von Beutelspacher [3].
4Zur Erinnerung: Eindeutig ist der kleinste Fixpunkt per Definition.



3. SEMANTIK FUR ANWEISUNGEN 69

Definition 5.4 (Das Schleifenfunktional Fj )
Fiir zwei Abbildungen 3 : ¥ — B und ~ : ¥ — ¥ definieren wir die Abbildung
Fory: (E2—32) — (X — X) wie folgt:

B o falls (o) = false
Foal€) = Ao €2 { E(y(o)) falls B(o) = true

Die Abbildung F3, nennen wir das Schleifenfunktionaﬂ

Noch eleganter — aber dafiir etwas gewdhnungsbediirftiger — hdtten wir schrei-
ben konnen:

o falls B(o) = false

Fpy=X € (X —X)\o€X. { E(v(o))  falls B(o) = true

Schén wére es nun, wenn Fjg ., fiir jedes 5 und 7 einen eindeutigen Fixpunkt
besitzen wiirde, d. h. wenn genau ein £ mit Fp () = ¢ existieren wiirde. Denn
dann wiirde durch diese Gleichung das £ eindeutig definiert. Wir miissen dazu
der Reihe nach die folgenden Fragen kléren:

1. Gibt es iiberhaupt ein £ : ¥ — ¥ mit Fz,(§) = &, d.h. besitzt Fp,
(wenigstens) einen Fixpunkt.

Die Antwort wird ja sein.

2. Wenn Fj, einen Fixpunkt besitzt: Ist dieser Fixpunkt eindeutig? D. h.
gilt fiir alle £, € (¥ — X) mit Fs,(§) =  und Fp,(¢) = ¢ gilt
£=¢"

Die Antwort wird im allgemeinen nein sein. Fir manche 8 und vy besitzt
Fa,~ mehrere verschiedene Fizpunkte.

3. Wenn der Fixpunkt nicht eindeutig ist: Kénnen wir einen bestimmten
Fixpunkt unter allen Fixpunkten auszeichnen, der dann eindeutig ist?

Wir werden unter allen Fixpunkten den bzgl. Mengeninklusion kleinsten
auszeichnen und zeigen, dajfl er existiert.

4. Wenn wir einen Fixpunkt eindeutigen auszeichnen kénnen: Pafit dieser
Fixpunkt zur operationalen Semantik der Schleife?

5Um hervorzuheben, daf8 diese Abbildung eine (partielle) Funktion auf eine (partielle)
Funktion abbildet, nennen wir die Abbildung ein Funktional.
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Wir werden sehen, daf$ der kleinste Fizpunkt genau zur operationalen
Semantik der Schleife pafst.

Bevor wir uns jedoch diesen Fragen zuwenden, werden wir uns durch die
Betrachtung von einigen Beispielen noch mehr Verstédndnis fiir das Schleifen-
funktional verschaffen.

Beispiel 5.1 (Schleifen und Schleifenfunktional)

1. Wir wihlen w = while true do skip, d.h. g = B[true] = Ao € X.true
und vy = C[skip] = idyx. Dann gilt
B o falls 5(o) = false
Fpa(§) = Ao € 2. { E(v(o)) falls B(o) = true

Wir sehen sofort, dafl gilt Fg,(£) = €.

D. h. fiir diese spezielle Wahl von ( und ~ ist das Schleifenfunktional
Fs die identische Abbildung, d.h. jede partielle Abbildung £ : ¥ —
¥ ist ein Fixpunkt von Fjs,. Die kleinste partielle Abbildung ist die
iiberall undefinierte Abbildung: Q = ). Und das entspricht genau der
Semantik der Schleife w, da diese Schleife fiir keinen Anfangszustand
terminiert.

2. Wir wihlen nun w = while —x=0 do x:= x—1, d.h. 8 = B[-x=0] =
Ao € Y.o(x) # 0 und v = Clxi= x—1] = Ao € X.0[o(x) — 1/z]. Dann
folgt aus

B o falls (o) = false
Foall) = Ao €% { &(y(o)) falls B(o) = true

unter Anwendung der Definition von  und v sofort

o falls o(x) =0
Fa(€) = Ao € X, { (ofo(z) — 1/2]) falls o(x) # 0

Die Frage ist nun, ob auch dieses Fjp. einen Fixpunkt besitzt? Die
Antwort ist ja. Und auch in diesem Falle gibt es mehrere Fixpunkte.
Die Abbildung f : ¥ — ¥ mit

ro) = { it 2

undef. sonst

ist ein Fixpunkt von Fpg .



3. SEMANTIK FUR ANWEISUNGEN 71

Dap f ein Fizpunkt von Fg,, ist, kann man leicht nachrechnen:

o falls o(z) =0

f(olo(x) = 1/z])  falls o(x) # 0

o[0/x] falls o(xz) =0
=X e€X. ¢ flolo(x)—1/x]) fallso(x) >0
flolo(z) —1/z]) falls o(z) <0
o[0/x] falls o(z) =0
=X € X. ¢ (ofo(x)—1/z))[0/x] falls o(x) >0
undef. falls o(z) < 0
{ ol0/x]  falls o(x) =0
=Xo€X.¢ o[0/z] fallso(x) >0
undef. falls o(z) <0
o[0/z]  falls o(x) >0
—Aoex { undef. falls o(z) <0
—f

Es gibt jedoch viele weitere Fixpunkte. Fiir jeden Zustand & ist die
Abbildung g : ¥ — ¥ mit

olo) = { g0/ Bl o) = 0

el sonst

ein Fixpunkt von Fjg,.

Dap g ein Fizpunkt von Fg ., ist kann man auch ganz leicht nachrech-
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o falls o(x) =
g(olo() — 1/2)) Jalls o(z) £

o[0/x] falls o(z) =0
glofo(xz) —1/z]) falls o(z) >0
glofo(x) —1/z]) falls o(z) <0

o0/ falls o(z) =0
=Xo €X. { olo(z) —1/z))[0/z] falls o(z) >0
<0

G falls o(x)

ol0/x] falls o(xz) =0
ol0/z] falls o(z) >0
o falls o(z) <0

=X €.

ol0/x] falls o(z) >0
o falls o(z) <0

Auch hier ist wieder die Frage, welche der Abbildungen f und g der
operationalen Semantik der Schleife entspricht. In diesem Falle ist es
f, die ,undefiniertere“, also die bzgl. Mengeninklusion kleinere, Abbil-
dung.

f C g auf partiellen Abbildungen bedeutet, dafi f an weniger Stellen
als g definiert ist, und daf$ die Abbildungen tbereinstimmen, wenn bei-
de definiert sind, d. h. fir jedes x gilt f(x) ist undefiniert oder es gilt

f(@) = g(x).

Die Beispiele zeigen also, da§ der kleinste Fixpunkt des Funktionals Fg
genau die Semantik der Schleife ergeben. Dafl das so ist, werden wir spéter
noch beweisen. Intuitiv 148t sich das wie folgt begriinden: Der kleinste Fix-
punkt ist nur fiir solche Zustéande definiert, fiir die das durch das Funktional
Fs~ unbedingt gefordert ist; fiir alle anderen Zusténde ist der Fixpunkt un-
definiert, was der Nichtterminierung entspricht. Groflere Fixpunkte ,,denken
sich fiir diese Félle einen mehr oder weniger beliebigen Wert aus“ (vgl. die
Abbildung g im obigen Beispiel), was natiirlich nicht dem operationalen Ver-
halten der Schleife entspricht. Im kleinste Fixpunkt gibt es diese Beliebigkeit
nicht, weshalb er genau dem operationalen Verhalten entspricht. Zunéchst
begniigen wir uns damit, zu zeigen dafl F3, immer einen kleinsten Fixpunkt
besitzt.
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Satz 5.5 (Schleifenfunktional besitzt kleinsten Fixpunkt)
Fiir jede Abbildung 3 : ¥ — B und v : ¥ — ¥ besitzt die Abbildung Fjs
einen beziiglich Mengeninklusion kleinsten Fixpunkt.

Beweis: Wir definieren die folgende Regelmenge R iiber X x i

R= {(0/(0,0)) | 5(o) = false}U
{({(e",0)}/(0,0)) | B(o) = true,~(o) = 0"}

Geméf Satz besitzt nun R einen kleinsten Fixpunkt @ C ¥ x ¥. Wir
zeigen nun, dafl () sogar eine partielle Abbildung ist, d. h. dafl gilt @ € ¥ —
3.

Geméfd Satz kénnenAWir Q durch die Folge von @)y C @1 C @2 C ...
mit Qo = 0 und Q;41 = R(Q;) charakterisieren: Q = (J,.y @i- Um zu zeigen,
daB @ eine partielle Abbildung ist, reicht es also zu zeigen, dafl jedes @); eine
partielle Abbildung ist. Wir beweisen dies durch vollstdndige Induktion:

Induktionsanfang: Offensichtlich gilt Qy =0 € (X — X).

Induktionsschritt: Wir nehmen nun an, dal ); eine partielle Abbildung
ist, d.h. Q; € (¥ — X) und zeigen, dafl auch Q);;; eine partielle Abbil-
dung ist.

Geméf Definition gilt
Qi1 = R(Qi) = {(0.0) | B(0) = false}U
{(a,0") | B(o) = true, (c",0") € Q;, (o) = 0"}
Da @); eine partielle Abbildung ist, kénnen wir dies umformulieren zu
Qiv1 = {(0,0) | (o) = false}U
{(0,0") | Blo) = true, Qi(y(0)) = o'}
Dies wiederum koénnen wir umschreiben zu

o falls (o) = false
Qi(v(0)) falls B(o) = true

also einer partiellen Abbildung.

Qi-{—l =\o € E{

Wir wissen nun also, dafl der kleinste Fixpunkt ) von R cine partielle Abbil-
dung auf 3 ist. Die Regeln R haben wir nun aber genau so gewéhlt, daf fiir
jede partielle Abbildung f : ¥ — ¥ gilt R(f) = Fp,(f). Dementsprechend
ist die partielle Abbildung () auch der kleinste Fixpunkt von Fj.,. O
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Wir haben diesen Beweis mit Hilfe des Umwegs tiber Regeln und die durch sie
induktiv definierte Menge gefiihrt. Das hat zwei Grinde: Erstens zeigt die-
ses Vorgehen, daff der Zusammenhang zwischen der mathematischen Seman-
tik und der operationalen Semantik enger ist, als man oft meint. Zweitens
konnen wir den Beweis hier fiihren, ohne bereits die Fizpunkitheorie in ihrer
vollen Allgemeinheit eingefiithrt zu haben. Das werden wir spditer nachholen
- damit eribrigt sich dann auch der obige Beweis.

Da wir nun wissen, daf§ der kleinste Fixpunkt von Fj3 , immer existiert, fithren
wir eine Bezeichnung fiir ihn ein (spéter werden wir diese Bezeichnung noch
verallgemeinern).

Definition 5.6 (Kleinster Fixpunkt)
Seien f: ¥ — B und v : ¥ — ¥ zwei Abbildungen. Den (beziiglich Men-
geninklusion) kleinsten Fixpunkt von Fg ., bezeichnen wir mit fix(Fgs).

Oft schreibt man auch fix Fg  anstelle von fix(Fg ).

Jetzt haben wir das mathematische Handwerkszeug bereitgestellt, um die
mathematische Semantik fiir die Anweisungen induktiv iiber den Aufbau der
Anweisungen definieren zu kénnen:

Definition 5.7 (Mathematische Semantik fiir Anweisungen)
Wir definieren die Abbildung C : Com — (X — X)) induktiv iiber den Aufbau
der Anweisungen:

e C[skip] = idx
o Clv:i=a] = Mo € X.0[A[a](0)/v]
e Clco; 1] = Cle1] o Cleo]

Cleo] (o) falls B[b](o) = true

o C[if b then ¢, else ¢1] = Ao € X. { Clerl(o) falls B[b](0) = false

e C[while b do ¢] = fiz(Fapjcpq)

Fiir eine Anweisung ¢ nennen wir C[¢] die (mathematische) Semantik von c.

Durch den Trick mit dem Fixpunkt haben wir also das Problem mit der
Selbstbeziiglichkeit der Definition aufgelost. Die obige Definition ist mathe-
matisch sauber und eindeutig formuliert. Insbesondere ist die Definition kom-
positional, da sich die Semantik jedes syntaktischen Konstruktes allein mit
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Hilfe der Semantik der Teilkonstrukte definieren lafit. Wir miissen uns jetzt
,hur noch* vergewissern, dafl es auch die richtige Definition ist, d. h. daf die
mathematische Semantik genau zum gleichen Ergebnis fithrt wie die opera-
tionale Semantik.

4 Betrachtungen zum kleinsten Fixpunkt

Um noch etwas mehr Versténdnis fiir die Wahl des kleinsten Fixpunktes von
Fs~ als Semantik fiir eine Schleife zu entwickeln, betrachten wir ihn in diesem
Abschnitt nochmal etwas genauer. Im Beweis, dal der kleinste Fixpunkt
von Fp, existiert (Satz haben wir die folgende Folge von partiellen
Abbildungen definiert’}

o fo =0, d. h. fyist die iiberall undefinierte Abbildung.

o fir1 = Fp(fi), d.-h. fiiq ergibt sich durch einmalige Anwendung des
Funktion Fjs,, auf f;.

Der kleinste Fixpunkt f von Fg. ist dann die Vereinigung aller f;, d.h.
J = U,en fi- Die Abbildungen f; schauen wir uns nun etwas genauer an:

6In dem Beweis haben wir die Abbildungen f; mit Q; bezeichnet, da noch zu zeigen
war, daf} alle @; partielle Abbildungen sind. Auch haben wir definiert Q;+1 = R(Q;); aber
wir haben am Ende des Beweises gesehen, da§ R genau dem Funktional Fj3 , entspricht.
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falls B(o) = false
falls 5(o) = true
falls B(o) = false
. sonst

falls B(o) = false

falls (o) = true
falls 5(o) = fi alse
falls 5(o) = true und G(y(0)) = false

. sonst

falls (o) = false

falls G(o) = true

falls 5(o) = false

falls (o) = true und B(y(0)) = false
falls (o) = true, B(y(0)) = true

und 5(y(v(0))) = false
sonst

falls (o) = false

falls B(o) = true

falls ein j <4 mit 3(7/(0)) = false existiert,
so daf fiir alle k < j gilt B8(v*(0)) = true

. sonst

falls ein j € N mit 3(7/(0)) = false existiert,
so daf fiir alle k < j gilt B(v*(0)) = true

. sonst
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Man sieht also, dafl f(o) das Ergebnis 4/(c) liefert, wenn 8(77 (o)) wahr ist
und fiir alle k < j gilt 3(7*(0)) falsch ist. Da jede Anwendung von v genau
einer Ausfiihrung des Schleifenrumpfes entspricht, entspricht v*(o) dem Zu-
stand nach dem k-ten Schleifendurchlauf und 3(7*(c)) der Auswertung der
Schleifenbedingung nach dem k-ten Schleifendurchlauf. Insgesamt spiegelt
also f genau das operationalen Verhalten der Schleife wieder. Die einzelnen
fix1 entsprechen dem i-maligen ,, Abwickeln“ der Schleife. Die Folge der Ab-
bildungen fy C fi C fo C f3 C ... ndhert sich immer weiter an f an. Man
nennt diese Folge deshalb auch Fizpunktapproximation.
Wie die operationale Semantik kénnen wir auch die mathematische Semantik
dazu benutzen, die Aquivalenz zweier Anweisungen zu beweisen. Dabei sind
zwei Anweisungen ¢g und ¢; dquivalent, wenn sie die gleiche Semantik haben,
d.h. wenn gilt C[co] = C[ea]-

Dapf das so ist, folgt aus der Aquivalenz der mathematischen Semantik und

der operationalen Semantik, die wir erst spiter beweisen werden (siehe Satz

und Folgerung ,

Beispiel 5.2

Wir betrachten wieder das Programm w = while b do ¢ und werden zeigen,
daB gilt w ~ if b then ¢; w else skip. Sei nun 5 = B[b] und v = C[¢].
Dann gilt

Clw]
= Def. von CJw] als kleinster Fixpunkt von Fsn
Fﬁ,v(cﬂwﬂ)
= Def. von Fp,
9 faHS ﬁ(o’) = false
Ao €. { Cﬂw]](’y(a)) falls 6(0’) = true

= Def. von C[¢; w] und v = C[(]
o falls B(o) = false
Ao € 2. { Cle; w](o) falls B(o) = true
= Def. C[skip]
C[skip](o) falls B(c) = false
Ao € X { Cle; w](o) falls B(o) = true
= Def. von C[[if b then c¢; w else skip] mit § = B[]
C[if b then c¢; w else skip]

Das Interessante an diesem Beweis ist, dafl wir nur ausgenutzt haben, dafl
Clw] ein Fixpunkt von Fgz, ist. Wir haben nicht ausgenutzt, daf es der
kleinste Fixpunkt ist.
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5 Aquivalenz der Semantiken

Bisher haben wir zwei verschiedene Semantiken fiir unsere Programmierspra-
che definiert, die operationale und die mathematische Semantik. Natiirlich
erwarten wir, dafl sie — auch wenn sie auf unterschiedliche Weise definiert
sind — iibereinstimmen. Dies werden wir in diesem Abschnitt beweisen. Wie
bereits in Abschnitt [Ij motiviert, sind die mathematische und die operationa-
len Semantik dquivalent, wenn fiir jede Anweisung ¢ und alle Zusténde o, o’
genau dann C[c] (o) = o’ gilt, wenn (¢, o) — o’ gilt. Alternativ dazu konnten
wir auch formulieren: C[c] = {(o,0") | (¢,0) — o'}

Bevor wir die Aquivalenz der Semantiken fiir Ausdriicke beweisen konnen,
miissen wir zunéichst die Aquivalenz der Semantiken fiir arithmetische Aus-
driicke und boolesche Ausdriicke beweisen:

Lemma 5.8 (Aquivalenz der Semantiken fiir Ausdriicke)
1. Fiir jeden arithmetischen Ausdruck a gilt Afa] = {(o,n) | (a,0) — n}.

2. Fiir jeden booleschen Ausdruck b gilt B[b] = {(o,t) | (b,0) — t}.
Beweis: Induktion tiber den Aufbau der Ausdriicke.

Ein genauerer Beweis fiir 1. wird in der Ubung besprochen. Der Beweis fiir
2. geht dann analog.

g

Zum Beweis der Aquivalenz der Semantiken fiir Anweisungen teilen wir die
Aquivalenz in zwei Implikationen auf. Zunichst beweisen wir:

Lemma 5.9
Fiir jede Anweisung ¢ und alle Zustdnde ¢ und ¢’ mit (¢, o) — ¢’ gilt auch

Cle](o) =o'.

Beweis: Wir beweisen die Aussage durch Induktion iiber die Regel fiir die
operationale Semantik. Das Préadikat P ist dabei

P({c,0) — o) =C[c](c) =0’

Wir betrachten nun jede Regel der operationalen Semantik:
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(skip,o) — o :
GemiB Definition von C (d. h. gemif Def. gilt C[skip] = ids, d. h.

C[skip](c) = o.

{,0) =n
(vi=a,0) — an/v]

GemiB Lemma [5.8]1 gilt Afa](c) = n, gemiB Definition von C gilt
Clv:=a] = Ao € X.0[A[a](0)/v]. Damit gilt C[v:=a](c) = o[ A[a](c)/v] =

o[n/v].

(co,0) = " (c1,0") =o'

(co;c1,0) — o '
GeméB Induktionsvoraussetzung gilt C[co]|(0) = ¢” und C[e1](0”) = o,
Gemiéf Definition von C gilt C[co; 1] (o) = Cle1](Clleo] (0)) = Clea] (o)

o'

(b,o0) — true (cp,0) — 0’
(if b then ¢ else ¢;,0) — o'
GemiB Lemma [5.82 gilt B[b](0) = true und gemiB Induktionsvoraus-

setzung gilt C[¢](0) = o'.
GeméB Definition von C gilt C[if b then ¢ else ¢;](0) = C[](0) =

o'

(b,0) — false (c1,0) — o’

(if b then ¢ else ¢1,0) — o’ °
GemiB Lemmalp.8]2 gilt B[b](0) = false und gemdB Induktionsvoraus-
setzung gilt Ce1](o) = o’
Geméf Definition von C gilt C[if b then ¢ else ¢1](0) = Cle1](0) =

o'.

(b,0) — false '
(while b do ¢,0) — o °

GemiB Lemma [5.8/2 gilt B[b](c) = false. GemiB Definition von C gilt

C[while b do c](0) = Fgpy,ci(C[while b do ¢])(0) = 0.

(b,0) — true (c,0) — o” (whilebdoc,d") — 0"

(while b do ¢,0) — o'
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GemiB Lemmal5.8)2 gilt B[b](0) = true und gemiB Induktionsvoraus-
setzung gilt C[c](¢) = ¢” und C[while b do c](¢”) = ¢’. Geméf Defi-
nition von C gilt C[while b do c](0) = Fppy,c1q(C[while b do c])(0) =
C[while b do ¢](C[c] (o)) = C[while b do c](c") = o’

i

Insgesamt ist der obige Beweis recht ,langweilig“. Nur die beiden letzten
Félle, die iiber die Schleife argumentieren, sind etwas interessanter. In diesen
beiden Fillen nutzen wir aus, dafl die Semantik der Schleife als Fixpunkt
von Fppcpg definiert ist: C[while b do c](0) = Faupy,cre(C[while b do c]).
In diesem Beweis nutzen wir nicht einmal aus, dal die Semantik der Schleife
als kleinster Fixpunkt von Fppy cf¢ definiert ist. Das sollte uns etwas st.l_ltzig
machen. Denn an irgendeiner Stelle sollte natiirlich in den Beweis der Aqui-
valenz auch eingehen, dafl wir den kleinsten Fixpunkt als Semantik fiir die
Schleife gewihlt haben. Dies wird aber erst bei der Implikation in die andere
Richtung eingehen. Diese umgekehrte Richtung beweisen wir als néchstes:

Lemma 5.10
Fiir jede Anweisung ¢ und alle Zusténde o und o’ mit C[c](o) = ¢’ gilt auch
(c,0) — o’

Beweis:

Man konnte geneigt sein, zu glauben, dafi der Beweis nun ganz analog zum
Beweis von Lemma geht, und sich deshalb den Beweis sparen.

Wie bereits oben erwdhnt, kann das aber nicht stimmen. Denn im Beweis
von Lemmal[5.9 haben wir noch an keiner Stelle ausgenutzt, dafy die Semantik
der Schleife als kleinster Fizpunkt des Funktionals Fg ., definiert ist. Dieses
Argument muf also in den Beweis dieses Lemmas eingehen. Der Beweis kann
also nicht analog zum Beweis von Lemmal[5.9 sein.

Dariiber hinaus sieht man schnell, daf§ der Beweis dieses Lemmas nicht durch
Regelinduktion bewiesen werden kann.

Wir beweisen die Aussage induktiv iiber den Aufbau der Anweisungen. Das
Pradikat P, das wir beweisen, definieren wir wie folgt:

P(c) =Vo,0’ € 2.(C[c](0) = o' = {(¢,0) — o)

Natiirlich ist auch in diesem Beweis der einzig spannende Fall das Schleife.
Der Vollstiandigkeit halber betrachten wir aber alle Konstrukte.
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skip:
GemiB Def. von C (Def. gilt C[skip] = idy. Fiir Zustinde o und
o’ mit C[[skip](0) = o’ gilt also 0 = ¢’. Gemifl der Regel

(skip,0) — o
fiir die operationale Semantik 148t sich dafir auch (skip,o) — o ab-
leiten.
vi=a:

GeméfB Def. von C gilt o/ = CJv:=a](0) = o[A[a](c)/v]. GemiB Lem-
ma [5.8]1 gilt dann auch (a, o) — Afa](c0). Mit der Regel

(a,0) —n
(vi=a,0) — o[n/v]

ist dann (v:=a,0) — o[A[a](c)/v] herleitbar.

Co, C1-

GemifB Def. von C gilt o/ = C[co;c1](0) = Cler] (Cleo] (o)), d. h. es gibt
ein ¢’ mit o’ = C[c1](¢”) und ¢” = C[eo] (o). Geméaf Induktionsvor-
aussetzung gilt dann (¢, o) — ¢” und (c¢y,0”) — o’. Mit der Regel

(co,0) — 0" {c1,0") — o
(co;¢1,0) — o

148t sich dann (cg;c1,0) — o herleiten.

c = if b then ¢; else ¢;:
Gelte nun o' = C[if b then ¢, else ¢;](¢). Wir unterscheiden zwei
Falle:

1. B[b](o) = false:
GemiB Lemma [5.8]2 gilt dann (b,0) — false. GemdB Def. von
C gilt in diesem Fall ¢’ = C[if b then ¢, else ¢1](c) = C[c1](0).
Geméaf Induktionsvoraussetzung gilt damit (c¢;,0) — o’. Mit der
Regel
(b,0) — false {(c1,0) — o’
(if b then ¢ else ¢;,0) — o’

ist dann (if b then ¢ else ¢1,0) — o' herleitbar.
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2. B[b](o) = true:
GeméB Lemma [5.8]2 gilt dann (b, o) — true. GemiB Def. von C
gilt in diesem Fall o/ = C[if b then ¢, else ¢1](c) = C[co] (o).
Gemif Induktionsvoraussetzung gilt damit (¢, o) — o’. Mit der
Regel
(b,0) — true {co,0) — o’
(if b then ¢, else ¢1,0) — o’

ist dann (if b then ¢, else ¢;,0) — o’ herleitbar.

w = while b do c:

Sei v = C[c] und g = B[b]. Dann gilt geméf Def. Cw] = fix Fs..
Wir miissen nun zeigen, daf§ fiir alle ¢ und ¢’ mit ¢’ = CJw](o) auch
(w,o) — o gilt.

Im Beweis von Satz [5.5| haben wir gesehen, da8 fiz Fj., die Vereinigung
der folgenden Abbildungen ist:

— fo=0Q
= fir1 = Fp4(fi)
D.h. es gilt Clw] = fix s = U;ey fi- Mit o' = Cw](o) gibt es also

ein i € N mit f;(o) = ¢’. Wir zeigen nun durch vollstandige Induktion,
daf fiir jedes i € N mit o’ = f;(0) gilt (w,0) — o":

i = 0: Wegen fy = gibt es kein ¢ und ¢’ mit ¢’ = fy(o). Deshalb ist
nichts zu zeigen.
i — i+ 1: Sel nun o’ = f;11(0). Wir unterscheiden zwei Fille:

B(o) = false: Geméf Def. von f;;; und geméB Def. von Fj ., gilt
dann o' = o. Mit 3 = B[b] und Lemma [5.82 gilt dann
(b,0) — false. Gemaf} der Regel

(b,0) — false
(while b do ¢,0) — ¢

ist dann (while b do ¢, o) — ¢ herleitbar.

B(o) = true: Gemé$ Def. von f;1; und geméafl Def. von Fjp, gilt
dann o' = f;(y(0)). Es gibt also ein ¢” mit ¢” = (o) =
Clc](o) und o' = f;(c").
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Dann gilt geméf Induktionsvoraussetzung (Induktion iiber
den Aufbau von c¢): (¢,0) — ¢”. GemaB Induktionsvoraus-
setzung (vollstdndige Induktion) gilt dann (w,¢”) — ¢’ und
mit # = B[b] und Lemma [5.8/2 gilt aulerdem (b, o) — true.
Geméf der Regel

(b,0) — true {(c,0) — o” (while bdo ¢,0") — o’

(while b do ¢,0) — o

ist damit auch (while b do ¢, o) — ¢’ herleitbar.

g

Mit Lemma|5.9| und haben wir die Aquivalenz der mathematischen und
operationalen Semantik fiir die Programmiersprache IMP bewiesen. Aller-
dings geht nur in Lemma [5.10 ein, da} die mathematische Semantik einer
Schleife als kleinster Fixpunkt des Funktionals Fj3, definiert ist. Wir haben
hier — schon wieder — ausgenutzt, daf3 sich der kleinste Fixpunkt durch die
Abbildungen fy C f; C f; C ... approximieren lafit. Das ist eine wesentlich
Eigenschaft des Funktionals Fj3 ., die wir uns im néchsten Kapitel noch etwas
genauer ansehen werden.

Da wir im Beweis jetzt insgesamt alle Voraussetzungen aus der Definition der
mathematischen Semantik benutzt haben, kénnen uns aber beruhigt zurtick-
lehnen und den folgenden Satz geniefien:

Satz 5.11 (Mathematische und operationale Semantik)
Fiir jede Anweisung ¢ € Com gilt C[c] = {(0,0") € ¥ x ¥ | (¢,0) — o'}

Wir hiitten auch schreiben konnen: Cc](o) = ¢’ gdw. {¢,0) — o’.

Beweis: Folgt unmittelbar aus Lemma [5.9 und [5.10] O

Eine unmittelbare Folgerung dieses Satzes ist, dal auch fiir die operationale
Semantik fiir jede Anweisung ¢ und jeden Zustand o hochstens ein Zustand
o' mit (c,0) — o existiert. Denn sonst wéire C[c] = {(0,0') € ¥ x ¥ |
(c,0) — o'} keine partielle Abbildung.

Aus dem Satz folgt noch eine weitere schone Eigenschaft der mathematischen
Semantik, die wir bereits in Beispiel benutzt haben: Zwei Anweisungen
sind genau dann &dquivalent, wenn sie dieselbe (mathematische) Semantik
haben.
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Folgerung 5.12 (Aquivalenz ist Identitiit der Semantik)
Zwei Anweisungen ¢ und ¢ sind genau dann dquivalent (in Zeichen ¢ ~ ),
wenn sie dieselbe Semantik besitzen (in Zeichen C[c] = C[¢]).

Beweis: Die Aussage folgt unmittelbar aus der Definition der Aquivalenz
von Anweisungen mit Hilfe der operationalen Semantik (Def. und der
Aquivalenz der mathematischen Semantik und der operationalen Semantik

(Satz [5.11)). O

6 Zusammenfassung

In diesem Kapitel haben wir die mathematische Semantik fiir Anweisungen
definiert. Die wesentliche Anforderung an die Definition der mathematischen
Semantik war, daf} sie jedem syntaktischen Objekt ¢ direkt ein semantisches
Objekt C[c] zuordnet. Dariiber hinaus muf} diese Definition kompositional
sein, d. h. die Definition der Semantik eines syntaktischen Objektes darf nur
die Semantik seiner Teilkonstrukte benutzen. Wir haben gesehen, dafl das bei
Schleifen nicht ganz einfach ist. Und wir sind schnell darauf gekommen, dafl
wir den kleinsten Fixpunkt des Schleifenfunktionals g, benutzen miissen,
um aus diesem Dilemma heraus zu kommen.

Die Beweise der Aquivalenz der mathematischen und operationalen Semantik
haben zwei Dinge gezeigt:

1. Wenn man sich die Definitionen der beidene Semantiken bis zum bitte-
ren Ende ansieht (d.h. wenn man sich auch iiberlegt, was die ,,Seman-
tik“ einer induktiven Definition ist), unterscheiden sich die Definitionen
der mathematischen und der operationalen Semantik gar nicht so we-
sentlich. Bei der mathematischen Semantik wird die Fixpunkttheorie
explizit benutzt — bei der operationalen Semantik nur implizit. Die ex-
plizite Benutzung der Fixpunkttheorie liefert uns eine kompositionale
Definition der Semantik.

2. Der kleinste Fixpunkt des Funktionals 148t sich durch iterierte Anwen-
dung des Funktionals, also durch die Abbildungen fy C fi C fo C ...,
approximieren. Darauf kommen wir im néchsten Kapitel noch ausfiihr-
lich zu sprechen.



Kapitel 6

Fixpunkte und semantische
Bereiche

Sowohl bei der Definition der operationalen Semantik als auch bei der Defi-
nition der mathematischen Semantik haben wir mehr oder weniger explizit
Fixpunkte benutzt. Die Existenz der Fixpunkte haben wir jeweils ad hoc
bewiesen. Es stellt sich jedoch heraus, daf§ die Beweise immer wieder nach
demselben Schema ablaufen. In diesem Kapitel werden wir deshalb etwas all-
gemeiner untersuchen, unter welchen Voraussetzungen Fixpunkte bestimmter
Funktionen existieren. Dies werden wir in Fizpunktsditzen formulieren.

Tatséchlich haben wir bereits zwei Fixpunktsétze kennen gelernt. Beim Be-
weis, daf fiir jede Regelmenge die kleinste R-abgeschlossene Menge existiert
(Lemma [4.5] in Kapitel []) haben wir bereits den Fixpunktsatz von Knaster
und Tarski kennengelernt. Die dquivalente Charakterisierung der induktiv
definierten Menge (Satz in Kapitel |4) und auch der Satz iiber die Exi-
stenz des kleinsten Fixpunktes des Funktionals Fj (Satz entspricht dem
Fixpunktsatz von Kleene. Diese beiden Sétze werden wir in diesem Kapitel
allgemein formulieren, wobei der Satz von Kleene in der Semantik die groflere
Bedeutung hat.

Mit Hilfe des Satzes von Kleene wissen wir dann, dafl fiir bestimmte Struk-
turen der kleinste Fixpunkt immer existiert. Allerdings miissen wir dafiir
beweisen, dafl die betrachtete Struktur die Eigenschaft hat, die im Satz von
Kleene gefordert sind. Weil dieser Nachweis oft recht miithsam ist, geben wir
am Ende systematische Konstruktionsregeln an, die immer zu Strukturen
fithren, die die notigen Eigenschaften besitzen.

85
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1 Grundlagen

Bevor wir die Fixpunktsétze angeben kénnen, miissen wir noch einige weitere
grundlegende Begriffe einfiihren.

Diese Begriffe wurden bereits in Kapitel [3 definiert. Sie werden hier zur
Auf frischung nochmal kurz wiederholt (und in der Vorlesung nur kurz ange-
deutet).

Definition 6.1 (Obere Schranke und Supremem)
Sei (X, =) eine reflexive Ordnung und Y eine Teilmenge von X.

1. Ein Element z € X heifit obere Schranke von Y, wenn fiir alle y € YV
gilt y < .

2. Die kleinste obere Schranke von Y nennen wir, das Supremum von Y,
wir schreiben dafiir auch \/ Y.

Das Symbol, das fiir das Supremum einer Menge Y benutzt wird, wird oft
an das Symbol der zugrundeliegenden Ordnung angepaj$t. Beispielsweise
schreibt man \JY fiir das Supremum bzgl. der Ordnung C oder oder| |Y
fiir das Supremum bzgl. der Ordnung C.

Eine obere Schranke von Y ist also ein Element, das grofler ist als jedes
Element aus Y. Es gibt Teilmengen, die keine obere Schranke besitzen. Fiir
X =Y = Nmit der iiblichen Ordnungsrelation besitzt Y beispielsweise keine
obere Schranke. Wenn wir allerdings X um das Element w erweitern, besitzt
Y = N eine obere Schranke: w. Es ist spielt also eine grofle Rolle, innerhalb
welcher Menge bzw. Ordnung X wir die obere Schranken von Y betrachten.
Auch das Supremum einer Menge mufl nicht immer existieren, und, wie bei
den oberen Schranken, kann die Existenz des Supremums einer Menge Y von
der Menge X, innerhalb der wir das Supremum suchen, abhéngen. Beispiels-
weise existiert das Supremum von N in N selbst nicht. Aber in NU{w} besitzt
N (und jede andere Teilmenge von N) ein Supremum.

Es besteht auch ein enger Zusammenhang zwischen dem gréfiten Element
einer Menge Y und dem Supremum. Wenn nédmlich Y ein grofites Element
besitzt, ist dieses grofite Element auch das Supremum von Y. Allerdings kann
eine Menge Y auch ein Supremum besitzen, wenn Y kein grofites Element
besitzt. Beispielsweise existiert fiir N in N U {w} das Supremum, aber N
besitzt kein grofites Element.

Entsprechend der oberen Schranke kann man auch die unter Schranke und
das Infimum als grofite untere Schranke definieren.
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Definition 6.2 (Untere Schranke und Infimum)
Sei (X, =) eine reflexive Ordnung und Y eine Teilmenge von X.

1. Ein Element x € X heif3t untere Schranke von Y, wenn fiir alle y € Y
gilt x < y.

2. Die grofite untere Schranke von Y nennen wir, das Infimum von Y'; wir
schreiben dafiir auch A Y.

Das Symbol, das fiir das Infimum einer Menge Y benutzt wird, wird
oft an das Symbol der zugrundeliegenden Ordnung angepafst. Beispiels
weise schreibt man (Y fir das Infimum bzgl. der Ordnung C oder oder
[1Y fir das Infimum bzgl. der Ordnung C.

Oft schreiben wir auch etwas suggestiver ver y anstelle von \/'Y.

Beispiel 6.1
1. Sei Q eine beliebige Menge. Dann ist (29, C) eine Ordnung. Fiir jede
Teilmenge Y C 29 existiert das Supremum (JY = V,ey y und das

Infimum (Y = A oy v

Die Potenzmengen sind eine sehr schone Struktur, da fir alle Teilmen-
gen die Infima und Suprema existieren. Leider gilt das fiir viele andere
Strukturen nicht.

2. Fir (N, <) existiert fiir jede endliche Teilmenge Y C N das Supremum
(das grofite Element der endlichen Teilmenge Y'); fiir unendliche Teil-
mengen Y C N existiert das Supremum dagegen nicht. Infima existieren
aber fiir jede nicht-leere Teilmenge von N.

Fragen: Was ist das Supremum der leeren Menge? Warum existiert das
Infimum der leeren Menge nicht?

3. Fir (NU{w}, <) existieren — wie bereits erwéhnt — fiir jede Teilmenge
das Infimum und das Supremum.

Frage: Was ist das Infimum der leeren Menge?

4. Fiir die Menge X = {a,b,c,d} mit a < ¢, b < ¢, a < dund b < d
existieren die Suprema und die Infima von {a,b} und {c, d} nicht.

Frage: Fiir welche Teilmengen von X existieren die Infima und die Su-
prema?
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Strukturen, fiir die ,,alle Suprema und alle Infima“ existieren, sind natiirlich
besonders schon. Solche Strukturen heiflen vollstindige Verbdinde.

Definition 6.3 (Vollstindiger Verband)
Eine reflexive Ordnung (X, <) heifit vollstindiger Verband, wenn fiir jede
Teilmenge Y C X das Infimum existiert.

In der obigen Definition wird fiir vollsténdige Verbénde nur gefordert, dafl
yalle Infima* existieren. In unserer informellen Definition hatten wir jedoch
auch verlangt, daf} alle ,,Suprema‘ existieren. Der Grund dafiir ist, dafl aus
der Existenz aller Infima auch die Existenz aller Suprema folgt.

Lemma 6.4 (Vollstingige Verbidnde und Existenz der Suprema)
Sei (X, <) ein vollsténdiger Verband. Dann existiert fir jede Teilmenge Y C
X das Supremum.

Beweis: Sehr einfach (Ubung). O

Zuletzt definieren wir die beziiglich einer Ordnung monoton steigenden Ab-
bildungen.

Definition 6.5 (Monoton steigende Abbildungen)
Seien (X7, <2) und (X3, =X5) reflexive Ordnungen. Eine totale Abbildung f :
X1 — X heifit monoton steigend, wenn fiir alle x,y € X; mit x <y y auch

f(x) 22 f(y) gilt.

Da bei uns keine monoton fallenden Abbildungen vorkommen, reden wir im
folgenden nur von monotonen Abbildungen, wenn wir monoton steigende
Abbildungen meinen.

Wenn sowohl monoton steigende als auch monoton fallende Abbildungen be-
trachtet werden, nennt man die monoton steigenden manchmal auch isoton
und die monoton fallenden antiton.

2 Satz von Knaster und Tarski

Mit Hilfe dieser Begriffe konnen wir nun den Fixpunktsatz von Knaster und
Tarski formulieren:

Satz 6.6 (Knaster-Tarski)
Sei (X, <) ein vollstindiger Verband und f : X — X eine monotone Abbil-
dung. Dann ist A{z € X | f(x) <z} der kleinste Fixpunkt von f.
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Beweis: Sei Y = {r € X | f(z) Rz} undy=AY.

Wir zeigen zunéchst, daf gilt f(y) < y (d. h. da y ein Préafixpunkt von f ist):
Dazu zeigen wir zunéchst, dafl f(y) eine untere Schranke von Y ist. Sei also
x € Y beliebig. Da y Infimum von Y ist, gilt y < x. Wegen der Monotonie
von f gilt also auch f(y) =< f(x). Mit z € Y und der Definition von Y gilt
auch f(z) < x; insgesamt gilt also f(y) < x. Damit ist f(y) also eine unter
Schranke von Y und, da y die grofite untere Schranke von Y ist gilt f(y) < y.
Als néchstes zeigen wir, dal y ein Fixpunkt von f ist: Aus f(y) < y folgt
wegen der Monotonie von f auch f(f(y)) < f(y). Damit gilt f(y) € Y. Da
y das Infimum von Y (also insbesondere eine untere Schranke von y) ist, gilt
y < f(y). Zusammen mit f(y) < y gilt f(y) = y.

Es bleibt zu zeigen, dafl y kleiner als jeder andere Fixpunkt ist. Sei also
x ein beliebige Fixpunkt von f, d.h. ein x € X mit f(z) = z. Dann gilt
insbesondere f(z) < x. Damit gilt x € Y. Da y das Infimum von Y ist gilt
y<ux.

Insgesamt haben wir damit gezeigt, dal y = A{x € X | f(z) 2 z} der
kleinste Fixpunkt von f ist. U

Diesen Satz hétten wir bereits zum Beweis von Lemma [4.5| benutzen konnen,
wo wir gezeigt haben, daf§ es eine kleinste R-abgeschlossen Menge gibt. Aller-
dings muBten wir dort das Lemma noch direkt beweisen (vgl. Ubung), weil
wir den Satz noch nicht kannten. Dabei ist dort (2%, C) der zugrundeliegen-
de vollstédndige Verband und R ist die monotone Abbildung, fiir die wir die
Existenz des kleinsten Fixpunktes bewiesen haben.

Streng genommen haben wir in Lemma [£.9 nicht die Existenz des kleinsten

Fizpunktes von R bewiesen, sondern die Existenz des kleinsten Prdifizpunk-

tes. Dabei sind die Prifizpunkte von R gerade die R-abgeschlossenen Mengen

(R(Q) C Q). Wir haben also die Existenz der kleinsten R-abgeschlossenen

Menge bewiesen. Wie man im obigen Beweis sieht, fdllt der kleinste Prifiz-
punkt aber mit dem kleinsten Fizpunkt zusammen.

3 Semantische Bereiche und Satz von Kleene

Der Fixpunktsatz von Knaster und Tarski ist ein schoner Satz und hat viele
Anwendungen. Leider sind die Strukturen, die wir bei der Definition von Se-
mantiken benutzen, meist keine vollstdndigen Verbénde. Wir kénnen diesen
Satz in der Semantik also oft nicht anwenden. Beispielsweise ist das Funk-
tional Fg . bei der Definition der mathematischen Semantik auf der Menge
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der partiellen Abbildungen definiert. Diese bilden leider keinen vollsténdigen
Verband.

Deshalb benétigen wir in der Semantik einen anderen Fixpunktsatz, der auch
fiir allgemeinere Strukturen gilt — wie zum Beispiel fiir die Menge der partiel-
len Abbildungen. Auflerdem werden wir sehen, daf§ wir fiir diese Strukturen
den kleinsten Fixpunkt der Abbildung approximieren konnen.

Die Pioniere der Semantik haben lange versucht, die zugrundeliegenden Struk-
turen zu vollstindigen Verbdinden zu machen, um eine elegante Definition
einer mathematische Semantik auf der Basis des Satzes von Knaster und
Tarski zu formulieren. Es hat sich aber herausgestellt, daf$ dies nicht so gut
funktioniert und es zweckmdfiger ist, nach anderen Strukturen mit anderen
Fizpunktsdtzen zu suchen.

Die Struktur, auf der der Fixpunktsatz operiert, nennen wir semantischen

Bereichll.

Definition 6.7 (Semantischer Bereich)

Eine reflexive Ordnung (D, C) heifit semantischer Bereich, wenn fiir jede (un-
endliche) aufsteigende Kette dy C dy = dy C ... mit d; € D das Supremum
| |;cn di existiert.

Der semantische Bereich heifit semantischer Bereich mit kleinstem FElement,
wenn D ein kleinstes Element besitzt. Das kleinste Element wird dann mit
1 p bezeichnet.

Wenn D aus dem Kontext hervor geht, schreiben wir auch kurz L anstelle
von Lp.

Oft werden in der Literatur nur semantische Bereiche mit kleinstem Element
betrachtet. Dann wird aber meist auf den Zusatz ,mit kleinstem Element*
verzichtet.

Offensichtlich ist jeder vollstindige Verband auch ein semantischer Bereich,
denn es existieren alle Suprema, also auch die fiir die aufsteigenden Ketten.
Allerdings gibt es auch andere Strukturen, die ein semantischer Bereich sind
— das war ja schlieBlich das Ziel der Ubung.

Beispiel 6.2 (Semantische Bereiche)
1. Fiir jede Menge X ist die Menge der partiellen Abbildungen D = (X —
X) mit C (auf den entsprechenden Relationen der Funktionen) als Ord-
nung ein semantischer Bereich.

Im Englischen nennt man semantische Bereiche domain oder auch complete partial
order (cpo). Deshalb benutzen wir D als Symbol fiir die zugrundeliegende Menge.
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Zur Erinnerung f C [’ bedeutet, daff an den Stellen x, an denen f(x)
definiert ist, auch f'(x) = f(x) gilt. f' kann aber an mehr Stellen defi-
niert sein. f C f' bedeutet also, dafy f' ,definierter ist als“ f.

Fiir eine aufsteigende Kette fob € fi C fo C ... ist f = [J;en fi das
Supremum.

Dieser semantische Bereich besitzt auch ein kleinstes Element, ndmlich
die tiberall undefinierte Funktion: L x_.xy=Q =10

2. Fiir jede Menge A ist die Menge der endlichen und unendlichen Sequen-
zen A® = A* U A¥ mit der Prifixrelation T ein semantischer Bereich
mit der leeren Sequenz als kleinstem Element | jc= ¢ .

Fiir die folgende Kette ¢ C a E ab C aba C abab C . .. ist die unendli-
che Sequenz ababab . .. das Supremum.

3. Fiir jede Menge X ist (X, idx) ein semantischer Bereich. Dieser se-
mantische Bereich heifit auch der diskrete semantische Bereich iiber X.
Dieser semantische Bereich besitzt im allgemeinen jedoch kein kleinstes
Element.

Fiir semantische Bereiche hat nicht mehr jede monotone Abbildung einen
kleinsten Fixpunkt. Da wir die Anforderungen an die zugrundeliegende Struk-
tur abgeschwécht haben, miissen wir die Anforderungen an die Abbildungen
verschérfen, um zu gewéhrleisten, daf sie einen kleinsten Fixpunkt besitzen.

Definition 6.8 (Stetige Abbildung)

Seien (Dy, ) und (Dy, Cy) semantische Bereiche (die nicht notwendig ein
kleinstes Element besitzen miissen). Eine Abbildung f : D; — Dy heifit
stetig, wenn fiir jede nicht-leere aufsteigende Kette dy &1 di 5y dy &y ...
in Dy das Supremum von {f(d;) | i € N} existiert und gilt | |,. f(d;) =
f (I_lieN di)-

Die Supremumsbildung kann man als Limesbildung auffassen (vgl. das Bei-

spiel mit der unendlichen Sequenz abababa . .. als ,Limes® der Menge {e, a, ab, aba, abab, ...} ).
Die Stetigkeit einer Abbildung bedeutet dann, daffi man Limesbildung und
Funktionsanwendung vertauschen kann. In diesem Sinne entspricht die De-

finition der Stetigkeit dem Begriff der Stetigkeit von Abbildungen auf den

reellen Zahlen, wie sie aus der Analysis bekannt ist.

Aus der Definition der stetigen Abbildungen folgt unmittelbar:
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Lemma 6.9 (Stetige Abbildungen sind monoton)
Seien (Di,C;) und (D, C,) semantische Bereiche. Jede stetige Abbildung
f: D1 — Dy ist monoton.

Umgekehrt existiert fiir jede monotone Abbildung f : D; — Dy und jede
aufsteigende Kette dy &1 di &y dp Ty ... auch das Supremum | |, f(d;).
Denn wegen der Monotonie von f gilt f(dy) CTo f(dy) Co f(da) Co ...
Da (D5, Cy) ein semantischer Bereich ist, existiert also auch das Supremum
dieser Kette; allerdings gilt nicht unbedingt | |,. f(di) = f([;en di)-

Bevor wir uns Beispiele fiir stetige Abbildungen ansehen, betrachten wir ein
Beispiel fiir nicht-stetige Abbildungen. Die sind viel interessanter, da die
meisten monotonen Abbildungen, die wir uns ausdenken kénnen, auch stetig
sind.

Beispiel 6.3 (Monotone aber nicht stetige Abbildung)
Sei A = {a,b} und (A*,C) der semantische Bereich der endlichen und un-

endlichen Sequenzen iiber A mit der Prifixrelation C als Ordnung. Wir de-
finieren nun die Abbildung f : A* — A* durch

e f(0) =c¢ fiir 0 € A%, d.h. fiir endliche Sequenzen iiber A und

e f(0) =afir o e A¥, d.h. fiir unendliche Sequenzen iiber A.

Offensichtlich ist f monoton. Wir betrachten nun die aufsteigende Kette von
Sequenzen aus A mit o; = a'. Das Supremum dieser Kette ist die unendliche
Sequenz o = aaaaa . ... Also gilt f(| |;cy0i) = f(aaaa...) = a. Allerdings
gilt fiir jedes i € N: f(0;) = €. Und damit gilt | |,y f(0i) = | ];ene = €

Der Grund fiir dieses Verhalten ist, dal die Abbildung f fiir unendliche Se-
quenzen einen Sprung macht (von ¢ fiir alle endlichen und auch extrem langen
Sequenzen auf a fiir unendliche Sequenzen).

Beispiele fiir stetige Abbildungen sind leichter zu finden: Beispielsweise ist
die Abbildung R fiir jede Menge von Regeln R (mit jeweils endlich vielen
Voraussetzungen) iiber @ stetig. Auch die Abbildung length : A~ — NU{w},
die jeder Sequenz ihre (endliche oder unendliche) Lange zuordnet, ist stetig.
Mit diesen Begriffen konnen wir nun den Fixpunktsatz von Kleene formulie-
ren:

Satz 6.10 (Fixpunktsatz von Kleene)

Sei (D, C) ein semantischer Bereich mit kleinsten Element | und sei f : D —
D eine stetige Abbildung. Dann existiert das Supremum | |, f*(L) und es
ist der kleinste Fixpunkt von f.
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d. h. fix(f) = |;en S(L)
Beweis:

Der Beweis verliuft ganz analog zum Beweis von Satz[{.8

Zunéchst beweisen wir durch vollstéandige Induktion, da8 fiir jedes ¢ € N gilt

(L) T FrL):
P =0: f(1) =LC f(1) = F1(1).

i — i+ 1: GemifB Induktionsvoraussetzung gilt fi(L) T f(L). Da f ste-
tig und damit geméf Lemma auch monoton ist, gilt f(f%(L)) C
FOFPHL))- Also gilt f77H(L) T f2(L).

Die fi(L) bilden also eine aufsteigende Kette in (D,C). Da (D,C) ein se-
mantischer Bereich ist, existiert das Supremum d = | |, f*(L).
Wir zeigen nun, dafl d ein Fixpunkt von f ist:

f(d) = Def. d

f(iew f1(L)) = [ stetig

Llien f(fZ(J—)) = Def fitt

Lien f7H (L) = L ist kleinstes Element
Llien fHH (LU L= Def. fO(L)

I_IieN (L) U f°(L) = Umsortierung

I_IiEN fZ(J—) =d

Zuletzt zeigen wir, dafl d der kleinste Fixpunkt von f ist. Sei d’ ein beliebiger
Fixpunkt von f, d.h. d € D mit f(d') = d’. Wir zeigen durch vollstindige
Induktion, daf fiir jede i € N gilt fi(L) C d"

i=0: fO(L)=1C d, da L das kleinste Element von D ist.

i — i+ 1: Gemif Induktionsannahme gilt fi(1) C d'. Da f stetig und damit
monoton ist, gilt auch f(1) C f(d) =d'.

Damit ist d' eine obere Schranke fiir alle f/(L). Da d die kleinste obere
Schranke aller fi(_L) ist (Supremum), gilt d C d'. O

Zum besseren Verstédndnis betrachten wir einige Beispiele.
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Beispiel 6.4 (Fixpunkte von stetigen Abbildungen)
1. Sei R eine Regelmenge iiber X, wobei jede Regel nur endlich viele

Voraussetzungen hat. Dann ist R auf der Menge der Teilmengen von
X beziiglich C eine stetige Abbildung (das werden wir in der Ubung
beweisen).

Dann ist Ip = J,cy @i mit Qo = 0 und Q;11 = E(Ql) der kleinste
Fixpunkt von R (vgl. Satz .

2. Sei A eine endliche Menge mit a € A und A* die Menge der endlichen
und unendlichen Sequenzen iiber A und length : A~ — N U {w} die
Abbildung, die jeder Sequenz o € A ihre Léange zuordnet.

Dann ist die Abbildung f : A® — A® mit f(o) = a'"9™"() stetig
(iibrigens ist auch die Abbildung length stetig).

Die Abbildung besitzt also in A* einen kleinsten Fixpunkt.

Frage: Was ist der kleinste Fizpunkt von f?
Frage: Was ist der kleinste Fizpunkt von f mit f(o) = alength(@)+1¢

Der Fixpunktsatz von Kleene hat gegeniiber dem Satz von Knaster und
Tarski zwei wesentliche Vorteile:

1. Er funktioniert auch dann, wenn die zugrundeliegende Struktur kein
vollstédndiger Verband ist. Es reicht, wenn sie ein semantischer Bereich
ist. Erfreulicherweise sind die meisten Strukturen, die in der Semantik
vorkommen semantische Bereiche, bzw. lassen sich einfach in solche
iiberfiithren.

2. Ein Problem des Satzes von Knaster und Tarski ist, daf3 der kleinste
Fixpunkt als Durchschnitt aller Prifixpunkte charakterisiert ist. Wir
miissen im allgemeinen einen Durchschnitt iiber unendlich viele Mengen
bilden (die wir nicht einmal systematisch konstruieren koénnen). Der
Satz liefert also kein konstruktives Verfahren.

Im Gegensatz dazu erlaubt uns der Satz von Kleene die systematische
Konstruktion des Fixpunktes d = | |,y f*(L). Natiirlich ist auch dies
eine unendliche Konstruktion. Allerdings kommen wir mit jedem f*(_L)
etwas ndher an den Fixpunkt heran. Der Fixpunkt wird also durch diese
Folge approximiert. Wir sprechen deshalb auch von Fizpunktapproz:-
mation. Bei der Semantik der Schleife haben wir gesehen, daf} es fiir
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einen konkreten Zustand reicht, ein f?(_L) zu betrachten; daf§ also eine
Approximation reicht.

In Kapitel 4f haben wir verschiedene Techniken zum induktiven Beweisen ken-
nen gelernt. Diese Techniken werden wir hier noch um eine weitere Technik
erganzen. Mit dieser Technik kann man Eigenschaften des kleinsten Fixpunk-
tes beweisen. Da wir den Fixpunkt einer stetigen Abbildung betrachten, mufl
dazu die zu beweisende Eigenschaft (bzw. das Pradikat) auch stetig sein.

Definition 6.11 (Stetige Eigenschaft)

Sei (D,C) ein semantischer Bereich mit kleinstem Element. Ein Pradikat
P C D heifit stetig, wenn fiir jede aufsteigende Kette pg C p; E ps C ... mit
p; € P fiir alle ¢ € N auch fiir das Supremum gilt | |,y p; € P.

Achtung: Es gibt andere Definitionen von stetigen Pridikaten.

Prinzip 6.12 (Berechnungsinduktion)
Sei (D, C) ein semantischer Bereich mit kleinstem Element L, sei f : D — D
eine stetige Abbildung und P ein stetiges Pradikat mit

e P(L)und
e fiir alle d € D mit P(d) gilt auch P(f(d)).

Dann gilt auch P(fiz(f)), d.h. das Pradikat gilt auch fiir den kleinsten Fix-
punkt von f.

Beweis: Diese Beweisprinzip la8it sich mit Hilfe der Charakterisierung des
kleinsten Fixpunktes durch den Satz von Kleene und unter Au_snutzung der
Stetigkeit von P auf die vollsténdige Induktion zuriickfithren (Ubungsaufga-
be). O

4 Konstruktion Semantischer Bereiche

Der Satz von Kleene liefert uns eine sehr elegante Theorie iiber die Existenz
der Fixpunkte von stetigen Abbildungen. Um den Satz von Kleene anwenden
zu kénnen, miissen wir allerdings erst einmal beweisen, daf§ die Voraussetzun-
gen das Satzes von Kleene vorliegen, d. h. daf die zugrundeliegende Ordnung
ein semantischer Bereich ist und dafl die Abbildung, deren Fixpunkt wir
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betrachten, stetig ist. Der Nachweis dieser Eigenschaften ist teilweise recht
miihselig. Deshalb geben wir in diesem Abschnitt einige einfache semantische
Bereiche und stetige Abbildungen an; dariiber hinaus geben wir Konstruktio-
nen an, mit deren Hilfe man aus semantischen Bereichen weitere semantische
Bereiche und neue stetige Abbildungen bilden kann. Wenn wir uns auf so
konstruierte Bereiche und Abbildungen einschrinken, wissen wir ohne weite-
ren Nachweis, daf} es sich um semantische Bereiche und stetige Abbildungen
handelt.

In diesem Kapitel verzichten wir im wesentlichen auf den Nachweis der Be-
hauptungen. In dem meisten Fdllen ist der Nachweis jedoch relativ einfach.

4.1 Diskrete Bereiche

Jede Menge X zusammen mit der identischen Relation idy bildet einen se-
mantischen Bereich (X, idx). Wir nennen diese semantischen Bereiche dis-
krete semantische Bereiche. Fiir zwei diskrete semantische Bereiche (X, idy)
und (Y, idy) ist jede Abbildung f : X — Y stetig.

4.2 Komposition

Seien (D, C4), (Dg, Cy) und (D3, C3) semantische Bereiche und f : Dy — Do
und g : Dy — Dj stetige Abbildungen. Dann ist auch g o f eine stetige
Abbildung (von D; nach Djs).

4.3 Produkt und Projektion

Wenn (Dy,Cy),...(D,, C,) semantische Bereiche sind, dann ist (D, C) mit
D = DyxDyx...xDyund (dy,...,d,) E(dy,...,d)gdw.dy Cd),...,d, C
d! ein semantischer Bereich. Dieser semantische Bereich heifit das (endliche)
Produkt der semantischen Bereiche (D, C), ... (D,, =, ). Wenn jeder seman-
tische Bereich (D;, C;) ein kleinstes Element L p, besitzt, dann besitzt das
Produkt ebenfalls ein kleinstes Element: Lp= (Lp,, Lp,,...,Lp,).

Fiir jedes (D;, C;) ist die Abbildung 7; : D — D; mit m;((dy, ..., d,)) = d; ei-
ne stetige Abbildung. Wir nennen sie die Projektion (auf die i-te Komponen-
te). Sei nun (£, C) ein weiterer semantischer Bereich und seien f; : £ — D;
stetige Abbildungen. Dann ist die Abbildung (fi,...,f,) : E — D mit

(fi,-.., fa)(e) = (fi(e), ..., fu(e)) eine stetige Abbildung.
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Fiir (f1,..., fn) und jedesi € {1,...,n} gilt w;o(f1,..., fn) = fi. Tatsichlich
wird das Produkt, die Projektionsfunktion und die Produktfunktion tiber diese
Eigenschaft definiert.

4.4 Funktionsriaume

Fiir die Semantik besonders interessant sind Funktionsrdume, da diese die
semantischen Objekte enthalten, die wir Programmen als Semantik zuordnen
wollen. Fiir zwei semantische Bereiche (D,Cp) und (E,Cg) definieren wir
[D— E]={f:D — E| f ist stetig}.

Zur Erinnerung: Mit D — E oder (D — FE) bezeichnen wir die totalen

Abbildungen von D nach E. Dagegen bezeichnet [D — E| nur die stetigen
totalen Abbildungen.

Auf den stetigen Abbildungen [D — E] definieren wir die Ordnung Cp_ g
wie folgt: Fiir zwei Abbildungen f, g € [D — E] gilt f Cip_ g g genau dann,
wenn fiir jedes d € D gilt f(d) Cg g(d), d.h. die Ordnung ist punktweise
definiert.
Diese Definition entspricht gerade unserer Sichtweise bei der Definition der
Ordnung auf partiellen Abbildungen: f jist weniger stark definiert als“ g.Dabei

bedeutet f(d) =L g, daf f an der Stelle d véllig undefiniert ist. Darauf kom-
men wir spdter noch zurick.

Dann ist ([D — E],Cip_p)) ein semantischer Bereich, der Funktionsraum
von (D,Cp) nach (E,Cg). Wenn (E,Cg) ein kleinstes Element | g besitzt,
dann besitzt auch der semantische Bereich ([D — EJ,Cp_p) ein kleinstes
Element: Lp_ g (d) =Lg fiir jedes d € D.

Mit D, E und [D — E] ist natiirlich auch das Produkt [D — E] x D ein
semantischer Bereich. Die folgende Abbildung apply : ([D — E] x D) — E
mit apply(f,d) = f(d) ist ebenfalls stetig.

Kurz kénnen wir dafiir auch schreiben apply € [([D — E] x D) — E].

Mit D, F und F sind auch [(F' x D) — E] und [F — [D — E]| semantische
Bereiche. Die Abbildung curry : [(F x D) — E| — [F — [D — E]] ist
definiert durch curry(f) = Az € F.Ad € D.f(z,d) fiir alle f € [(F x D) —
ol

curry macht aus einer Abbildung f mit zwei Argumenten, eine Abbildung

g mit einem Arqument. Das Ergebnis der Abbildung g ist eine weitere Ab-

bildung in dem verbleibenden Argument, das dann das Endergebnis der ur-
spriinglichen Abbildung f mit beiden Argumenten liefert: curry(f) = g mit

g(x)(d) = f(z,d) oder kurz curry(f)(z)(d) = f(z,d).



98 KAPITEL 6. FIXPUNKTE UND SEMANTISCHE BEREICHE

Auch die Abbildung curry ist stetig.

Zuletzt betrachten wir die Abbildung, die jeder stetigen Abbildung den klein-
sten Fixpunkt zuordnet. Fiir einen semantischen Bereich D mit kleinstem
Element ist die Abbildung fiz : [D — D] — D, die jeder stetigen Abbildung
f D — D ihren kleinsten Fixpunkt zuordnet, stetig.

4.5 Lifting

Der Fixpunktsatz von Kleene (Satz ist nur anwendbar, wenn der zu-
grundeliegende semantische Bereich ein kleinstes Element besitzt. Fiir seman-
tische Bereiche ohne kleinstes Element ist er nicht anwendbar. Wir kénnen
einen semantischen Bereich ohne kleinstes Element, jedoch kanonisch in einen
semantischen Bereich mit kleinstem Element umwandeln. Dazu fiigt man im
wesentlichen nur ein kleinste Element hinzu. Das nennen wir Lifting und fiir
einen semantischen Bereich D bezeichnen wir das Lifting mit D .

Im Detail ist die Definition des Liftings etwas aufwendiger. Sei (D, Cp) ein
semantischer Bereich, der nicht notwendigerweise ein kleinstes Element ent-
halten mufl. Sei [.] : D — X eine injektive Abbildung und L ein Element,
das nicht im Bild von |.| vorkommt.

D. h. fir alled,d" € D mitd # d' gilt auch |d] # |d'] und es gibt kein d € D
mit |d] =L.

Dann definieren wir den semantischen Bereich (D, Cp ) durch D, = {|d] |
de D}U{L}mit LCp dfirjedesde€ D, und |d| Cp, |d'| gdw. dCp d'.
Wir nennen (D, ,Cp ) das Lifting von (D,Cp).

Die Abbildung |.] und das Element L fallen bei uns vom Himmel“. Man
kann sie mit den Techniken der Allgemeinen Algebra bis auf Isomorphie ein-
deutig charakterisieren. Darauf gehen wir hier aber micht niher ein. Wir
gehen einfach davon aus, daf$ sie uns gegeben werden.

Offensichtlich ist (D, Cp, ) ein semantischer Bereich mit kleinstem Element
1, wenn (D, Cp) ein semantischer Bereich ist. Dariiber hinaus ist die Abbil-
dung |.] : D — D, stetig.

Sei nun (F,Cpg) ein weiterer semantischer Bereich mit kleinstem Element
1lg und sei f : D — FE eine stetige Abbildung. Dann ist die Abbildung
f*: D, — E mit f*(|d]) = f(d) und f*(L) =Lg ebenfalls stetig. Wir
nennen die Abbildung f* die strikte Erweiterung von f.
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In der Semantik versucht man meist, alle Abbildungen total zu machen. Un-
definierte Resultate und Eingaben werden dann durch ein spezielles Element
reprisentiert — namlich das kleinste Element des semantischen Bereiches.
Wenn wir also L als einen undefinierten Wert ansehen, liefert f* fiir eine
undefinierte Fingabe auch eine undefinierte Ausgabe! Funktionen, die fir ei-
ne undefinierte Eingabe eine undefinierte Ausgabe liefern nennt man strikt.

Fiir die Abbildung f ist die undefinierte Eingabe L moch gar nicht zuldssig.
Durch die strikte Erweiterung f* wird dies zum Ausdruck gebracht.

Noch allgemeiner kénnen wir * als einen Operator * bzw. eine Abbildung
auffassen, die jede stetige Abbildung f auf die stetige Abbildung f* abbildet.
Um das deutlicher zu machen, konnen wir auch schreiben f* = (f)*. Dann
ist (.)* eine Abbildung aus [D — E] — [D, — E|. Diese Abbildung ist sogar
stetig.

Wenn f durch einen A\-Ausdruck f = Az € D.e definiert ist, schreibt man
fiir die Anwendung der strikten Erweiterung von f auf ein Element d € D,
oft auch f*(d) =letz <= d.e.

In dieser Notation kann man letx < d als eine Zuweisung lesen. Dabei
wird der Wert von d an x ubergeben, wenn er definiert (also nicht L ist)
und der Ausdruck e wird dann mit diesem Wert ausgewertet. Wenn d jedoch
nicht definiert ist (d. h. die Auswertung nicht terminiert) ist, scheitert bereits
die Zuweisung und das Ergebnis ist undefiniert. Am besten sieht man den
Unterschied bei einer Abbildung, die ein Konstantes Ergebnis besitzt: f =
Az € N.1. Dann gilt f*(L) = letx <L .1 =1. Im Gegensatz dazu wiirde fiir
f'=Xx e Dy.[1] gelten f'(L) =[1].

Fiir f*(7) = letx < 7.1 = |1], denn das Konstrukt let bildet implizit von N
auf N1 ab.

Durch die Konstruktion des Liftings konnen wir nun alle Mengen bzw. die
entsprechenden diskreten semantischen Bereiche, die wir in einer Program-
miersprache benutzen wollen, zu einem semantischen Bereich mit kleinstem
Element machen. Ein Beispiel ist B, . Alle Operationen auf B kénnen wir
mit Hilfe der strikten Erweiterung auf B, ,liften“. Beispielsweise ist V* die
strikte Erweiterung der booleschen Operation V. Mit der oben eingefiihrten
Notation konnen wir schreiben b V* ¥ =letx < bletx’ <V .x V '

4.6 Endliche Summe

Als letzte Konstruktion fithren wir disjunkte Vereinigung von semantischen
Bereichen ein. Fiir Mengen D, ..., D, bezeichnet Dy +. ..+ D,, die disjunkte
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Vereinigung. Das entspricht den variant records in PASCAL oder einer dis-
junkten und vollsténdigen Vererbungsbeziechung in UML. Es gibt verschie-
dene Moglichkeiten, die disjunkte Vereinigung zu definieren. Die eleganteste
Methode benutzt wieder die Techniken der Allgemeinen Algebra. Wir benut-
zen hier die etwas unelegantere Technik der expliziten Definition. Fiir eine
endliche Folge von Mengen Dy, ..., D, definieren wir die disjunkte Vereini-
gung wie folgt: D = {(i,d) | i € {1,...,n},d € D;}. Die erste Komponente
gibt an, aus welcher Menge das Element kommt, die zweite bezeichnet das
Element selbst. Auf diese Weise konnen wir fiir jedes Element eindeutig sa-
gen, aus welcher Menge es kommt, selbst dann, wenn die Ausgangsmengen
nicht disjunkt sind. Wir machen die Mengen also mit Hilfe der ersten Kom-
ponente explizit disjunkt.

Fiir jedes ¢ € {1,...,n} definieren wir eine Abbildung in; : D; — D mit
in;(d) = (i,d), die Injektion| von den einzelnen Mengen D; in D.

Fiir semantische Bereiche (D1, Cp,), ..., (Dy, Cp, ) definieren wir den seman-
tischen Bereich (D,Cp) mit (i,d) C (j,d’) genau dann, wenn ¢ = j und
d Cp, d. Wir nennen diesen semantischen Bereich die Summe der seman-
tischen Bereiche (D1,Cp,),...,(Dy,Cp,). Fir n > 2 und D; # () besitzt
die Summe kein kleinstes Element, selbst dann nicht, wenn jeder einzelne
semantische Bereich (D;,Cp,) ein kleinstes Element besitzt.

Fiir stetige Abbildungen f, : Dy — E,..., f, : D, — E ist die Abbildung
[fi,--- fa] © D — E definiert durch [fi,... fu]((i,d)) = fi(d). Diese Abbil-
dung ist stetig.

Es gilt d@hnlich wie beim Produkt und den Projektionen [f1,..., fu]oin; = f;.

5 Eine Sprache fiir stetige Abbildungen

Aufbauend auf den Konstrukten des vorangegangenen Abschnittes definieren
wir nun ein Sprache, die es uns erlaubt, stetige (und nur stetige) Abbildun-
gen zu definieren. Allerdings halten wir uns nicht mit syntaktischen Details
auf. Im wesentlichen werden wir dazu die A\-Ausdriicke benutzen: Ax € D.e.
Dabei miissen wir aber darauf achten, dal der Ausdruck e so gebaut ist, dafl
Axr € D.e immer stetig ist. Der Ausdruck muf} also in jeder Variable, die in
ihm vorkommt, stetig sein. Wir nennen einen Ausdruck stetig, wenn fiir jede
Variable x die Abbildung Az € D.e stetig ist.

2Uber die Charakterisierung dieser Abbildungen wiirde man die disjunkte Vereinigung
mit Hilfe der Allgemeinen Algebra definieren.
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Nachfolgend geben wir nun Regeln zur Konstruktion von stetigen Ausdriicken
an.

Variablen Fiir eine Variable z vom Typ (D, Cp) ist x ein stetiger Ausdruck
vom Typ (D, Cp).

Konstanten Jedes Element d € D eines semantischen Bereiches (D, Cp)
ist ein stetiger Ausdruck vom Typ (D,Cp). Insbesondere sind Lp, true,
true, 0, 1, ... stetige Ausdriicke entsprechenden Typs. Aber auch die zuvor
definierten Abbildungen apply, curry und fiz sind stetige Ausdriicke.

fix ist eine Konstante des semantischen Bereiches [[D — D] — D], curry ist
eine Konstante des semantischen Bereiches [[(F x D) — E] — [F — [D —
E]] und apply des semantischen Bereiches [([D — E] x D) — E, wobei wir
streng genommen die Funktionen noch mit den entsprechenden semantischen
Bereichen D, E und F indizieren miijfSten.

Hier definieren wir sogar noch eine weitere Funktion, die Fallunterscheidunyg,
eine Abbildung in drei Argumenten: . = .|. : [(B, x D x D) — D] wo-
bei (D,Cp) ein semantischer Bereich mit kleinstem Element L p ist. Diese
Abbildung ist definiert durch:

ey falls b= [true]
b= eilea =< ey falls b= |false]
J_D falls b :J_BJ_

Dies ist ein Beispiel fiir eine nicht-strikte Abbildung. Denn es kann sein,
dafl e; undefiniert ist, die Fallunterscheidung aber trotzdem ein definiertes
Ergebnis (ungleich Lp, ) liefert, ndmlich dann, wenn b den Wert false hat.

Tupel Wenn ey, ..., e, stetige Ausdriicke vom Typ Dy, ..., D, sind, dann
ist (eq,...,e,) ein stetiger Ausdruck vom Typ Dy X ... x D,,.

Funktionsanwendung Wenn f eine stetige Abbildung aus dem Bereich
[D — E] ist, und e ein stetiger Ausdruck vom Typ D, dann ist f(e) ein
stetiger Ausdruck vom Typ E.
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A-Abstraktion Wenn e ein stetiger Ausdruck vom Typ E ist und x eine
Variable vom Typ D, dann ist Az € D.e ein stetiger Ausdruck vom Typ
[D — EI.

Mit Hilfe der obigen Konstrukte und Notationen kénnen wir nun stetige
Abbildungen definieren. Wir kénnen sogar rekursive Abbildungen definieren.
Dies zeigen wir anhand des Beispiels der Fakultatsfunktion. Zunéchst geben
wir eine pseudoprogrammiersprachliche Formulierung an:

function fac(x: nat) : nat {
if x = 0 then 1
else x * fac(x-1)

Diese Funktion driicken wir nun mit Hilfe unserer Sprache aus. Dazu definie-
ren wir zunéchst:

FAC:[N—N,] - [N— N,]
mit
FAC=Mf e N> N, | AXxeN|z=0] — [1]||z] " f(x—1)
¥ bezeichnet dabei die Erweiterung des Produkts - von N auf N .

Dann gilt fac = fiz(FAC) und fac(n) = apply(fiz(FAC),n)).

6 Zusammenfassung

In diesem Kapitel haben wir uns mit Sétzen iiber die Existenz von Fixpunk-
ten von Abbildungen beschéftigt. Es hat sich herausgestellt, da} sich der
klassische Fixpunktsatz von Knaster und Tarski fiir unsere Zwecke nicht so
gut eignet, da die zugrundeliegenden Strukturen in der Informatik meist keine
vollstandigen Verbédnde sind (und auch nicht verniinftig in solche eingebettet
werden konnen).

Deshalb haben wir einen Fixpunktsatz fiir semantische Bereiche und stetige
Abbildungen betrachtet. Der hat dariiber hinaus den Vorteil, dafl sich damit
der Fixpunkt einer Abbildung approximieren 1af3t.

Zuletzt haben wir dann Konstruktionsregeln und eine Sprache betrachtet,
mit der wir immer innerhalb der stetigen Abbildungen und der semantischen
Bereiche bleiben. Das spart uns den Aufwand nachzuweisen, daf§ die Fix-
punkte existieren und insbesondere die Abbildung fix immer wohldefiniert
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ist. Am Ende haben wir sogar gesehen, dafl wir innerhalb dieser Notation
mit Hilfe von fiz sogar rekursive Abbildungen definieren kénnen. Mit Hilfe
dieser Sprache kann man dann auch einer funktionalen Programmiersprache
(mit Rekursion eine Semantik zuordnen).

Wir haben hier nur einen kurzen Uberblick iiber diese Konstruktion gegeben;
genauer Informationen findet man unter dem Stichwort typisierter Lambda-
Kalkiil.
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Kapitel 7

Axiomatische Semantik

In diesem Kapitel stellen wir die axiomatische Semantik vor. Die axiomati-
sche Semantik definiert nicht das Verhalten eines Programms, sondern defi-
niert seine Eigenschaften. Diese Eigenschaften werden mit Hilfe von Regeln
formuliert. Diese Regeln konnen umgekehrt auch als Beweisregeln fiir diese
Eigenschaften aufgefaf3t werden.

Damit stellt die axiomatische Semantik den Zusammenhang zur Verifikation
von Programmen her. Deshalb gehen wir hier im Rahmen der Vorlesung
Semantik nur am Rande auf die axiomatische Semantik ein.

Die axiomatische Semantik — genauer die Aquivalenz dieser Semantik zur ope-
rationalen und mathematischen Semantik — hat auflerdem sehr tiefgreifende
theoretische Konsequenzen: mit ihrer Hilfe 148t sich der berithmte Unvoll-
standigkeitssatz von Godel (bzw. die Nicht-Axiomatisierbarkeit der Arith-
metik) beweisen. Auch darauf konnen wir hier leider nicht eingehen.

1 Motivation

Wie gesagt definiert die axiomatische Semantik die Eigenschaften eines Pro-
gramms. Dazu miissen wir uns also zunéchst iiberlegen, welche Eigenschaften
eines Programms wir beschreiben wollen. Wir werden uns dabei — ganz klas-
sisch — auf den Zusammenhang zwischen Eingabe und Ausgabe bzw. zwischen
Anfangs- und Endzustdnden beschrinken. Beispielsweise gilt fiir das folgende
Programm die folgende Zusicherung:

{z=iNi>0Nny=1}
while ] < xdo" y:=yxx; xi=x — 1 _

105
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ly =1}

Diese Zusicherung kann man wie folgt lesen: Wenn die Anweisung

while 1 <x do "y:=yxx; xi=x — 1 _

in einem Zustand gestartet wird, fiir den z =i Ai > 0 Ay = 1 gilt, und das
Programm irgendwann terminiert, dann gilt im Endzustand y = i!.

Wichtig ist, dafi die Zusicherung NICHT fordert, dafi die Anweisung ter-
miniert, sondern nur etwas iber den Endzustand sagt, wenn sie terminiert.
Dies entspricht also gerade der partiellen Korrektheit von Programmen. Es
gibt andere Formen der Zusicherung, die auch verlangen, daf$ die Anweisung
auch terminiert. Aber die betrachten wir hier nicht.

Dabei sind x und y Programmuvariablen, weil sie im Programm vorkommen.
Sie nehmen also jeweils den Wert der entsprechenden Variable im Anfangszu-
stand bzw. im Endzustand an. Die Variable ¢ dagegen kommt im Programm
nicht vor; wir nennen sie eine Logikvariable. Sie kann jeden beliebigen Wert
erhalten, der aber im Anfangs- und Endzustand gleich ist. Auf diese Weise
kénnen wir ausdriicken, daf§ am Ende die Variable y den Wert von x! des
Anfangsbestands hat. Denn wir wissen aufgrund der Bedingung x = ¢, dafl
i den Wert haben muf}, den = am Anfang besitzt. Aufgrund der Bedingung
y = 4! wissen wir, dafl y am Ende die Fakultdt des Wertes der Variable x
vom Anfang hat.

Allgemein besteht eine Zusicherung also aus drei Teilen, der Vorbedingunyg,
der Anweisung und der Nachbedingung: {A} ¢ {B}, wobei A und B pradika-
tenlogische Formeln sind und c¢ eine Anweisung. In den préadikatenlogischen
Formeln diirfen auch Quantoren vorkommen, wobei wir nur iiber Logikva-
riablen quantifizieren diirfen. Hier ist ein weiteres Beispiel fiir eine solche
Zusicherung (wobei b(x) ein beliebiger boolescher Ausdruck ist, in der die
Variable x vorkommt):

{z =0} while =b(x) do x:=x + 1 {b(x) AVi.(0 <iAi<z)= —b(i)}.

Nochmal zur Erinnerung: Die Zusicherung sagt nicht, daf$ das Programm
in jedem Zustand, der die Vorbedingung erfillt, terminiert. Beispielsweise
terminiert die Anweisung in unserem Beispiel nicht, wenn b nie wahr wird.
Die Zusicherung besagt nur, daf$ im Endzustand die Nachbedingung gilt, wenn
denn der Endzustand erreicht wird.

Eine interessante Frage ist dann, fir welche Anweisungen ¢ die Zusicherung
{true}c{false} gilt? Es gibt tatsichlich Anweisungen, fiir die diese Zusiche-
rung gilt.
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Die axiomatische Semantik macht nun nichts anderes, als Regeln anzuge-
ben, um derartige Zusicherungen herzuleiten. Natiirlich sollten diese Regeln
so geartet sein, daf} alle Zusicherungen, die wir mit den Regeln herleiten
kénnen, auch im oben angedeuteten intuitiven Sinne gelten. Das nennt man
die Korrektheit der Regeln. Umgekehrt sollten auch alle Zusicherungen, die
intuitiv gelten, mit Hilfe der Regeln hergeleitet werden konnen. Das nennt
man die Vollstindigkeit der Regeln. Damit wir diese Begriffe formalisieren
konnen, werden wir zunédchst die Giiltigkeit einer Zusicherung auf eine forma-
le Grundlage stellen. Wir werden dies mit Hilfe der operationalen Semantik
tun.

2 Grundlagen der Priadikatenlogik

Bevor wir die Giiltigkeit von Zusicherungen formulieren kénnen, wiederholen
wir einige wichtige Begriffe aus der Prédikatenlogik und fiithren einige No-
tationen ein, die wir spater zur Definition der Giiltigkeit von Zusicherungen
benétigen.

2.1 Logikvariablen, Ausdriicke und Formeln

In den Beispielen haben wir gesehen, wie wir priadikatenlogische Formeln
aufbauen konnen. Neben den Programmvariablen V diirfen in pradikatenlo-
gischen Ausdriicken auch logische Variablen vorkommen. Fiir solche Varia-
blen definieren wir eine neue syntaktische Menge L, fiir deren Elemente wir
die Bezeichnungen 1, i1, i3 und ¢ und i"” reservieren. Wir gehen im folgenden
davon aus, daf} die Logikvariablen und die Programmvariablen disjunkt sind
(d.h. VNL = 0).

Aus diesen bauen wir dann die arithmetischen Ausdriicke Aexp; mit logischen
Variablen auf, wie wir das auch schon bei den arithmetischen Ausdriicken in
Anweisungen formalisiert haben. Aus diesen kénnen wir dann die pridika-
tenlogischen Formeln Form aufbauen:

Aexp;: a== nl|v|ilag+ai|ag—ay|ag*a;

Form: F .= t|a0:a1\a0§a1]—\FOIFO/\Fl|F0\/F1\VZ'.F\EIZ'.F
In unseren Beispielen werden wir auch weitere boolesche Operatoren (ins-
besondere die Implikation) und arithmetische Operatoren zulassen (wie Bei-
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spielsweise die Fakultétsfunktion).

2.2 Belegungen und Auswertung von Ausdriicken

Eine Abbildung ( : . — 7Z nennen wir eine Belegung der Logikvariablen.
In einem gegebenen Zustand o und fiir eine gegebene Belegung [ kénnen
wir nun Ausdriicke mit Logikvariablen auswerten. Wir schreiben dafiir in
Anlehnung an die entsprechende Notation der mathematischen Semantik fiir
Ausdriicke: Afa](5,0).

Die Definition der Auswertungsfunktion ist eine einfache Ubungsaufgabe.
Der Vollstindigkeit halber geben wir sie hier trotzdem an:

o A[n](8,0) =n
A[](8,0) = o(v)

A[il (B, o) = B(3)

Alao + a1](8,0) = Alao](8, o) + Ala1](8, o)
Alao — a1](8,0) = Alao](8, o) — Ala1](8, o)
o Alag * a1](8,0) = Alao](83,0) - Ala1](8, o)

Man kann auch leicht zeigen, daf fiir a € Aexp gilt A[c](8,0) = A[c](o).

2.3 Giiltigkeit einer pradikatenlogischen Aussage

Fiir einen gegebenen Zustand ¢ und eine gegebene Belegung 3 definieren,
ob eine préadikatenlogische Formel gilt. Wenn eine Formel F' in § und o gilt,
schreiben wir 3,0 = F.

Auch die Giiltigkeitsbeziehung kénnen wir einfach induktiv iber den Aufbau
der Formel definieren:

e (3,0 =t gilt genau dann, wenn t = true gilt.
B,0 = ag = a1 gilt genau dann, wenn Alao](8,0) = Ala1](8, o) gilt.
8,0 E ag < a1 gilt genau dann, wenn Alac](8,0) < Afa1](8,0) gilt.
B,0 = Fy A Fy gilt genau dann, wenn 8,0 = Fy und 8,0 |E Fy gilt.
B,0 = Fy Vv Fy gilt genau dann, wenn 3,0 = Fy oder 8,0 = Fy gilt.
B,0 = —Fy gilt genau dann, wenn nicht 8,0 = Fy gilt.

8,0 = Vi.Fy gilt genau dann, wenn fiir alle Belegungen 3’ mit §'(i') =
B(i") fiir alle i’ £ i auch §',0 E Fy gilt.
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e (3,0 | Ji.Fy gilt genau dann, wenn fir eine Belegungen 3 mit 5'(i") =
B(i") fir alle i’ #i auch 3,0 = Fy gilt.

Eine priadikatenlogische Formel F' heifit allgemeingiiltig, wenn fiir alle Be-
legungen 3 und alle Zustinde o gilt: 5,0 = F. Wir schreiben dann auch

= F.

2.4 Substitution

Zuletzt definieren wir die Substitution einer Programmvariablen in einer For-
mel. Fiir eine Programmvariable v € V| einen Ausdruck a € Aexp (ohne
Logikvariablen) und eine Formel F' bezeichnet F'[a/v] diejenige Formel, in
der jedes Vorkommen der Variablen v durch den Ausdruck a ersetzt wird.
Dies nennen wir eine Substitution.

Der Vollstindigkeit halber geben wir hier eine induktive Definition fir die
Substitution an:

e nfa/v] =n.

e V' a/v] = v falls v Z v und v'[a/v] = a falls v="1".

o ifa/v] = 1.

e (a0 + ar)[a/v] = (aola/v] + ar[a/v]).

* (ao —a1)[a/v] = (aola/v] — aia/v]).

e (ag xay)[a/v] = (agla/v] x ai]a/v]).

o tla/v] =t.

o (a0 = ar)la/v] = (aola/v] = arfa/]).
¢ (a0 < a1)la/v] = (aola/v] < arfa/v]).
o (Fy A Fy)la/v] = (Fola/v] A Fila/v]).
o (FoV Fy)la/v] = (Fola/v] V Fila/v]).
o (=F)[a/v] = ~(Fla/u]).

o (Vi.F)[a/v] =Vi.(Fla/v])

e (Ji.F)[a/v] = Ji.(Fla/v])

In der Definition der Substitution haben wir ganz bewuft darauf verzichtet,
Ausdriicke mit Logikvariablen fiir eine Variable einzusetzen. Es dirfen nur
arithmetische Ausdriicke substituiert werden. Denn sonst hitten wir darauf
achten miissen, dafl Logikvariablen micht unter die Bindung eines Quantors
geraten. Dies hitte zu einer unnotig komplizierten Definition gefiihrt, die uns
hier keinen weiteren Nutzen gebracht hdtte.
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Die Notation fiir die Substitution erinnert bewufit an die Zustandsmodifi-
kation. Es gibt aber einen wichtigen Unterschied: Die Substitution operiert
syntaktisch auf einer Formel, also einem syntaktischen Objekt. Die Zustands-
modifikation operiert auf einem Zustand, also einem semantischen Objekt.
Es besteht aber trotzdem ein enger Zusammenhang zwischen den beiden
Konzepten: das Substitutionslemma.

Lemma 7.1 (Substitutionslemma)

Sei F' € Form eine Formel, v € V eine Programmvariable, a € Aexp ein
Ausdruck, ( eine Belegung und o ein Zustand. Dann gilt 5,0 = F[a/v]
genau dann, wenn (3, oo (a)/v] E F gilt.

Beweis: Das Substitutionslemma 148t sich leicht durch Induktion iiber den
Aufbau der Ausdriicke und Formeln beweisen. O

3 Zusicherungen

Mit diesen Begriffen und der operationalen Semantik kénnen wir nun den
Begriff der Zusicherung und unsere informelle Beschreibung ihrer Giiltigkeit
formalisieren.

Definition 7.2 (Zusicherung)

Fiir zwei préadikatenlogische Formeln A und B und eine Anweisung ¢ nennen
wir {A} ¢{B} eine Zusicherung.

Die Zusicherung heif3t giiltig, wenn fiir jede Belegungen 3 und jeden Zustand
o mit f,0 E A und jeden Zustand ¢’ mit ¢’ mit {(c,0) — o’ auch gilt
B,0" = B. Fiir eine giiltige Zusicherung schreiben wir auch = {A} ¢ {B}.

Der Wert der logischen Variablen dndert sich bei den beiden Interpretationen
von A und B nicht (8 bleibt gleich); der Wert der Programmuariablen dndert
sich dagegen (die Giiltigkeit von A wird bzgl. o diberprift, die Giiltigkeit von
B beziiglich o’ ).

Wir geben nun Beweisregeln an, mit deren Hilfe man die Giiltigkeit von Zusi-
cherungen beweisen kann. Am Ende werden wir feststellen, dal wir mit diesen
Regel genau diejenigen Zusicherungen herleiten kénnen, die auch giiltig sind.
Da wir das aber a priori nicht wissen benutzen wir fiir die durch Regeln
herleitbaren Zusicherungen ein anderes Symbol F {A} ¢ {B}. Diese Regel
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werden Zusicherungslogik oder oft auch Hoare-Kalkiil genannt, da die Regel
auf C.A.R. Hoare zuriick gehen [7].

Definition 7.3 (Zusicherungslogik (Hoare-Kalkiil))
Die Zusicherungslogik besteht aus den folgenden Regeln:

{A} skip {4}

{Ala/v]} vi=a {A}
{A} o {C} {C}a{B}
{A} co;e1 {B}
{ANb}eo{B} {CA-b}cy{B}
{A} if b then ¢, else ¢; {B}
{ANDb}c{A}
{A} while b do ¢{A A —b}
FA=A {A}c¢{B} B =B1B
{A}c{B}

Wenn eine Zusicherung { A} ¢ { B} mit diesen Regeln herleitbar ist, schreiben
wir = {A} c¢{B}.

In der Zusicherungslogik gibt es fiir jedes Konstrukt unserer Programmier-
sprache IMP eine Regel. Dazu kommt noch eine weitere Regel, die es er-
laubt die Zusicherungen fiir eine Anweisung zu verdndern. Sie heiflit Ab-
schwéchungsregel. weil eine bereits bewiesene Zusicherung damit abgeschwécht
werden kann. Die Regeln fiir die einzelnen Konstrukte unserer Program-
miersprache stellen gewissermaflen die Bausteine fiir Beweise dar; die Ab-
schwichungsregel stellt den Mortel dar, der es erlaubt, die Bausteine zusam-
menzukleben und gewisse Anpassungen vorzunehmen (vgl. Bsp.).

Die Regeln fiir die meisten Anweisungen sind unmittelbar einsichtig. Die ein-
zige Anweisung, zu der man etwas sagen sollte, ist die Regel fiir die Zuwei-
sung. Zunachst wundert man sich sicher, warum die Regel , riickwérts® formu-
liert ist und nicht vorwérts. Diese Regel wird deshalb oft auch Riickwdrtsregel
genannt. Man kann sich aber leicht klar machen, daf3 die naive Vorwértsregel

{true} vi=a{v = a}
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falsch ist. Dazu mufl man sich nur die Zuweisung x:= x+1 ansehen. Eine
korrekte (und hinreichend ausdrucksmiichtige) ,, Vorwértsregel* wire kom-
plizierter. Aulerdem ist die Riickwértsregel viel natiirlicher — wenn man sich
erstmal an diesen Gedanken gewohnt hat. Beim praktischen Beweisen fiihrt
die Riickwértsregel dazu, dal man Beweise von hinten nach vorne konstru-
iert. Das ist dann aber schon Gegenstand einer Verifikationsvorlesung.

Die zweite Regel, die einer Erlduterung bedarf, ist die Abschwichungsregel.
In dieser Regel kommen namlich Voraussetzungen vor, die gar nicht inner-
halb der Zusicherungslogik ableitbar sind, ndmlich die Implikationen A = A’
und B’ = B. Diese miissen mit den klassischen Regeln der Logik bewiesen
werden. Dies deuten wir dadurch an, daf§ wir das Symbol = davor setzen;
das bedeutet, daf die Implikationen allgemeingiiltig sein miissen. Regeln zum
Beweis geben wir dafiir aber nicht an[}

Auch wenn Programmverifikation nicht unser Thema ist, wollen wir wenig-
stens ein Programm mit Hilfe des Hoare-Kalkiils beweisen.

Beispiel 7.1 (Fakultitsfunktion)
Wir beweisen die folgende Zusicherung (vgl. Abschnitt |1)):

{z=iNi>0Nny=1}
while 1 <xdo "y:= yxx; xi=x — 1 _

ly =i}

Den Beweis formulieren wir allerdings nicht in Form eines Herleitungsbau-
mes, sondern, indem wir die Zusicherungen direkt in die Anweisung hinein
schreiben. Der Herleitungsbaum 148t sich daraus jedoch relativ einfach ge-

!Tats#chlich ist es unmdoglich einen vollstindigen Satz von Regeln zum Beweis aller
allgemeingiiltigen Aussagen anzugeben. Das ist eine Konsequenz des Unvollsténdigkeits-
satzes von Godel. Weil wir uns um diese Problematik hier nicht kiimmern wollen, geben
wir diese Voraussetzung hier semantisch an.
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winnen.

1: {z=iNni>0Nny=1}

2: {yxz!l=ilAN0<uz}

3: whilel <x do

4 : {yxzxl=ilA0<zAl<zx}

5: {lyxz)*x(z—1)!=d A0 (z—1)}
6 : Vi=Y k% X;

7 {yx(z—1D=ilA0< (z—-1)}

8: x:=x — 1;

9: {yxx!l=ilAN0 <z}

10: {y*xz!l=ilA0<zA-1<uzx}

11: {yxa!l=ilAx =0}

12: {y=il}
Die Frage ist, wie kommt man auf einen derartigen Beweis und wie entwickelt
man ihn. Die wichtigste Aufgabe dabei ist es eine Schleifeninvariante zu ent-
decken. In unserem Beispiel ist das die Aussage y * z! = i! A0 < z, denn
die bleibt bei jedem Schleifendurchlauf giiltig, wenn sie vorher gilt. Diese
schreiben wir also zunéchst in das Programm hinein (Zeile 9). Ausgehend
von Zeile 9 konnen wir dann durch zweimalige Anwendung der Riickwérts-
regel die Zeilen 7 und 5 ergénzen; Zeile 5 konnen wir durch Anwendung der
Abschwichungsregel zu Zeile 4 modifizieren. Mit Zeilen 4 und 9 kénnen wir
dann die Schleifenregel mit A = y*z! = i! A0 < x anwenden und wir erhalten
die Zeilen 2 und 10. Die Schleifenregel entspricht also exakt der Anwendung
der Schleifeninvariante! Zuletzt wenden wir die Abschwéichungsregel an und
erhalten die Zeilen 1 und 11. Eine weitere Abschwichung (die wir nur aus di-
daktischen Griinden nicht sofort im ersten Schritt durchgefiihrt haben) liefert
uns Zeile 12. Der Beweis ist also fertig.
Diesen Beweis kénnten wir nun in einen Herleitungsbaum umwandeln, was
aber relativ langweilig ist.

4 Korrektheit und Vollstindigkeit

Die Regeln der Zusicherungslogik kénnen wir einerseits als eine weitere Se-
mantik fiir Anweisungen auffassen, die axiomatische Semantik fiir Anwei-
sungen. Andererseits konnen wir sie als Beweiskalkiil fiir die Giiltigkeit von
Zusicherungen auffassen. Im ersten Fall sollten wir tunlichst beweisen, daf3
die axiomatische Semantik dquivalent zur operationalen oder zur mathema-
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tischen Semantik ist. Im zweiten Fall sollten wir nachweisen, dafl der Beweis-
kalkiil korrekt und vollstédndig ist. Im Endeffekt ist das aber nur eine Frage
der Sichtweise, denn die Giiltigkeit einer Zusicherung wurde ja bereits mit
Hilfe der operationalen Semantik definiert. Die Arbeit bleibt ist also dieselbe.

Zunachst beschéftigen wir uns mit der Korrektheit der Zusicherungslogik.
Korrektheit bedeutet, dafl jede Zusicherung, die wir mit Hilfe der Regeln
herleiten konnen, auch gilt. Kurz konnen wir dies wie folgt formulieren:

F{Ate{B} = F{A}c{B}

Satz 7.4 (Korrektheit der Zusicherungslogik)
Fiir jede Zusicherung {A} c{B} mit - {A} ¢{B} gilt auch = {A}c{B}.

Beweis: Diese Aussage a8t sich durch Induktion {iber die Regeln der Zusi-
cherungslogik unter Anwendung der Definition der Giiltigkeit und der ope-
rationalen Semantik einfach beweisen. Der interessanteste Fall ist der Beweis
der Riickwartsregel; es stellt sich ndmlich heraus, dal diese Regel exakt dem
Substitutionslemma (Lemma entspricht. Die Durchfithrung des Beweises
ist eine relativ einfache Ubungsaufgabe. O

Nun wissen wir also, daff alles, was wir mit der Zusicherungslogik beweisen
konnen, auch wirklich stimmt. Das sollte niemanden wirklich {iberraschen.
Die viel spannendere Frage ist, ob wir auch alle giiltigen Zusicherungen be-
weisen konnen (wenn wir uns nicht zu blod anstellen). Wenn wir wirklich alles
beweisen konnen, was gilt, dann heifit der Kalkiil vollstandig. Kurz kénnen
wir die Vollstédndigkeit wie folgt formulieren:

={Are{B} = F{A}c{B}

Die Vollsténdigkeit ist also genau die umgekehrte Richtung der Implikation
fiir die Korrektheit.

Satz 7.5 (Vollstindigkeit der Zusicherungslogik)
Fiir jede Zusicherung {A} c{B} mit = {A} ¢{B} gilt auch F {A} c¢{B}.

Beweis: Diese Aussage konnen wir im Rahmen dieser Vorlesung nicht bewei-
sen. Der Beweis ist sehr aufwendig. Ein Indiz dafiir ist, dafl aus dem Beweis
dieses Satzes der Unvollstdndigkeitssatz von Godel als einfache Folgerung
abféllt (darauf gehen wir hier aber nicht niher ein). Im Skript zur 4-stiindi-
gen Vorlesung aus dem WS 2002/03 ist der Beweis jedoch enthalten; auch
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im Buch von Winskel [11] ist er zu finden. O

Der obige Vollstandigkeitssatz ist jedoch noch mit grofler Vorsicht zu ge-
niefen. Denn in den Regel der Zusicherungslogik haben wir ja nur den An-
teil, der iiber Zusicherungen redet, durch syntaktische Regeln beschrieben.
Fir die Allgemeingiiltigkeit der Implikationen in der Abschwéchungsregel
haben wir keine syntaktischen Regeln formuliert — die Verantwortung dafiir
haben wir an die Logiker abgegeben. Die Zusicherungslogik ist also nicht
effektiv. Die Frage ist nun, ob wir einen Satz von syntaktischen Regeln
angeben konnen, mit dem alle allgemeingiiltigen Implikationen hergeleitet
werden konnen. Man kann zeigen (zum Beispiel mit Hilfe unseres obigen
Vollsténdigkeitssatzes), dafl es einen solchen Satz von Regel NICHT geben
kann! Deshalb nennt man die Vollstéindigkeit, die wir im obigen Satz formu-
liert haben, auch relative Vollstdndigkeit. Die Zusicherungslogik ist nur rela-
tiv zur Allgemeingiiltigkeit der Implikationen vollstéindig. Mehr kénnen wir
aus prinzipiellen Griinden nicht erreichen. In der so harmlos erscheinenden
Abschwichungsregel steckt also eine enorme ,,Power“. Uber diese Problema-
tik konnte man aber eine eigensténdige Vorlesung halten, so dafl wir uns hier
mit diesen Andeutungen begniigen miissen.

5 Zusammenfassung

In diesem Kapitel haben wir eine ganz andere Art der Semantik kennen ge-
lernt. Die Semantik einer Anweisung ist nicht unmittelbar durch ihr Verhal-
ten definiert, sondern durch die Eigenschaften die fiir die Anweisung gelten.
Tatsédchlich ist es Ansichtssache, ob es ich bei der axiomatischen Semantik
um eine Semantik handelt oder einen (auf der operationalen oder mathe-
matischen Semantik aufbauende) Beweistechnik. In jedem Falle stellt die
axiomatische Semantik den Zusammenhang zur Programmverifikation her.
Der Nachweis der Korrektheit und Vollstédndigkeit der Verifikationsregeln
entspricht dann gerade dem Nachweis der Aquivalenz der axiomatischen Se-
mantik zur operationalen bzw. zur mathematischen Semantik.

Aus der Sicht der Programmverifikation sind die Regeln der axiomatischen
Semantik allerdings erst der Anfang. Auf die eigentlichen Aspekte der Pro-
grammverifikation konnten wir hier leider nicht eingehen. Die Regeln der
axiomatischen Semantik bilden jedoch den Kern fast aller Verifikationsansétze.
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Kapitel 8

Zusammenfassung

In dieser Vorlesung haben wir uns mit den Techniken zur Definition von Se-
mantiken und zur Argumentation iiber ihre Eigenschaften, insbesondere zum
Nachweis der Aquivalenz zu anderen Semantiken beschiftigt. Eine zentrale
Rolle spielten dabei induktive Definitionen und induktive Beweise und die
semantischen Bereiche und Fixpunkte. Im Laufe der Vorlesung sollte deut-
lich geworden sein, dafl induktive Definitionen und Fixpunkte weniger weit
auseinander liegen als man zunéchst erwarten wiirde. Eigentlich sind es nur
zwei verschiedene Sichtweisen von ein und demselben Sachverhalt.

Obwohl also die mathematische Semantik und die operationale Semantik —
wenn man genau hinguckt — weniger unterschiedlich sind als erwartet, gibt es
doch einen wichtigen Unterschied in der Formulierung. Denn wir haben gese-
hen, daf} die operationale Semantik nicht kompositional definiert ist, wahrend
die mathematische Semantik kompositional definiert ist. Genau um die Kom-
positionalitit zu erreichen, haben wir bei der Definition der mathematischen
Semantik Fixpunkte explizit benutzt und spéter die Fixpunkttheorie ganz
allgemein eingefiihrt. Dabei sind Fixpunkte nichts Esotherisches. Sie ergeben
sich ganz natiirlich aus der Selbstbeziiglichkeit der zugrundeliegenden Kon-
zepte. Die Fixpunkttheorie erlaubt es uns, diese Selbstbeziiglichkeit mathe-
matisch sauber und prézise aufzulésen, und damit zu einer kompositionalen
Semantik zu gelangen. Wie wir gesehen haben wird die Fixpunkttheorie im-
plizit (in Form der induktiven Definiton) zwar auch bei der Definition der
operationalen Semantik eingesetzt. Allerdings wird dort die Selbstbeziiglich-
keit mehr unter den Teppich gekehrt als wirklich gelost. Dementsprechend
ist die operationale Semantik nicht kompositional.
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Ein weiteres Anliegen der Vorlesung ware ganz allgemein die mathematische
Formulierung von von Konzepten und der Beweis von Aussagen iiber diese
Konzepte. Im Rahmen der Vorlesung und der Ubung haben wir verschiedene
Beweistechniken eingeiibt, die auch in ganz anderen Bereichen der Informatik
genutzt werden konnen. Denn wer genau hinsieht, wird feststellen, dafl es in
der Informatik nur so von induktiven Definitionen und Beweisen und auf der
Riickseite der Medaille nur so von Fixpunkten wimmelt — wenn auch oft nur
unter der Oberflache.
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