Chemie (Kinetik) ohne Differentialgleichungen

Beschreiben des dynamisches Verhaltens einer chemischen Reaktion mit Hilfe der elementaren Grundrechenarten und ohne Verwendung höherer Mathematik anhand ausgewählter Übungsaufgaben und mit Unterstützung einer Tabellenkalkulation wie z.B. EXCEL.

Bemerkungen:

Die Dimensionen sind wie folgt angegeben und werden bei den folgenden Rechnungen nicht immer angegeben, aber stillschweigend benutzt.

Physikalische Größe	Dim
Zeit (t)	S
Konzentration []	g/1
Reaktionsgeschwindigkeit (v)	g/(1·s)

Wichtige Vorbemerkung:

Die chemischen Größen, wie z.B. Konzentration [A](t), Reaktionsgeschwindigkeit v(t), usw. werden zu den Zeitpunkten $0 \cdot \Delta t$, $1 \cdot \Delta t$, $2 \cdot \Delta t$, $3 \cdot \Delta t$, ... also allgemein nach dem Zeitpunkt $t_n = n \cdot \Delta t$ betrachtet.

Man definiert dann:

$$[A](t_n) = [A]_n$$

 $v(t_n) = v_n$
usw.

1 Mathematisches Modell

1.1 Die chemischen Vorgänge

1.1.1 Anschauliche Beschreibung

Ein Stoff A der Konzentration [A] zerfällt mit einer bestimmten "Geschwindigkeit" v_a - die proportional der Konzentration [A] (mit dem Proportionalitätsfaktor k_a) ist - in den Stoff B.

Umgekehrt zerfällt auch der Stoff B der Konzentration [B] mit einer bestimmten "Geschwindigkeit" v_b - die proportional der Konzentration [B] (mit dem Proportionalitätsfaktor k_b) ist - in den Stoff A.

Als Reaktionsgleichung dargestellt:

$$\begin{array}{ccc} & k_a \\ A & ----> & B \end{array}$$

1.2 Detaillierte Beschreibung

1.2.1 Bezeichnungen

Die Konzentration des Stoffs A zum Zeitpunkt t wird mit [A](t) bezeichnet.

Die Konzentration des Stoffs B zum Zeitpunkt t wird mit [B](t) bezeichnet.

Die Reaktionsgeschwindigkeit des Stoffs A zum Zeitpunkt t (d.h. die pro Zeiteinheit abnehmende Konzentration des Stoffs A = die um den gleichen Betrag zunehmende Konzentration des Stoffs B) wird mit $v_a(t)$ bezeichnet.

Die Reaktionsgeschwindigkeit des Stoffs B zum Zeitpunkt t (d.h. die pro Zeiteinheit abnehmende Konzentration des Stoffs B = die um den gleichen Betrag zunehmende Konzentration des Stoffs A) wird mit $v_b(t)$ bezeichnet.

Die sich zum Zeitpunkt t ändernde Konzentration [A](t), (d.h. die Konzentrationsänderung des Stoffs A pro Zeiteinheit) wird mit A(t) bezeichnet.

Die sich zum Zeitpunkt t ändernde Konzentration [B](t), (d.h. die Konzentrationsänderung des Stoffs B pro Zeiteinheit) wird mit [B](t) bezeichnet.

1.2.2 Gesetze aus der Chemie

$$v_a(t) = k_a \cdot [A](t) \qquad (C11)$$

$$v_b(t) = k_b \cdot [B](t) \qquad (C12)$$

1.2.3 Mathematische Beschreibung von [A](t) und [B](t)

$$[A](t) = v_b(t) - v_a(t)$$
 (C21)

$$[B]$$
 (t) = $v_a(t) - v_b(t)$ (C22)

(C11) und (C12) eingesetzt in (C21) und (C22) ergeben:

$$[A](t) = k_b \cdot [B](t) - k_a \cdot [A](t)$$

[B] (t) =
$$k_a \cdot [A](t) - k_b \cdot [B](t)$$

1.2.4 Berechnung zu bestimmten (diskreten) Zeitpunkten t_n (=n · Δt)

1.2.4.1 Für die Konzentrationsänderungen gelten:

[A]
$$(t_n) = k_b \cdot [B](t_n) - k_a \cdot [A](t_n)$$
 (F11)

$$[B]$$
 $(t_n) = k_a \cdot [A](t_n) - k_b \cdot [B](t_n)$ (F12)

oder anders geschrieben:

$$[A]_n = k_b \cdot [B]_n - k_a \cdot [A]_n$$

$$[B]_n = k_a \cdot [A]_n - k_b \cdot [B]_n$$

1.2.4.2 Konzentrationen von A und B zum Zeitpunkt 0 betragen:

$$[A]_0 := [A](t_0)$$
 (F21)

$$[B]_0 := [B](t_0)$$
 (F22)

1.2.4.3 Annäherung

Die Konzentration des Stoffs A zum Zeitpunkt t_{n+1} (nach n+1 Zeitabschnitten Δt), kann mit folgender Formel nicht exakt berechnet, sondern nur **angenähert** werden, da die

Konzentrationsänderung [A] während des Zeitraums (Zeitabschnitts) Δt nicht konstant ist. Damit man aber eine gute Annäherung erreichen kann, muß man den Zeitraum Δt hinreichend klein wählen.

$$[A](t_{n+1}) \approx [A](t_n) + [A](t_n) \cdot \Delta t$$

$$[B](t_{n+1}) \approx [B](t_n) + [\stackrel{\bullet}{B}] (t_n) \cdot \Delta t$$

oder anders geschrieben:

$$[A]_{n+1} \approx [A]_n + [A]_n \cdot \Delta t \tag{F31}$$

$$[B]_{n+1} \approx [B]_n + [B]_n \cdot \Delta t \tag{F32}$$

Chemische Reaktionsgleichungen ohne Differentialgleichungen

Man kann also hintereinander (iterativ) berechnen:

$$[A]_0$$
 (F21) $[B]_0$ (F22)

$$[A]_1$$
 (F11)

$$[B]_1$$
 (F12)

$$[A]_2 \qquad (F31)$$

Das heißt man kann die Konzentrationen [A] und [B] nach einem beliebigen Zeitabschnitt t_n berechnen!!!

1.2.5 Bemerkungen für mathematisch Interessierte

1.2.5.1 Rekursion

Mit (F11) bzw. (F12) in (F31) bzw. (F32) und (F21) und F(22) eingesetzt ergibt sich:

$$[A]_0 = [A](t_0)$$

$$[B]_0 = [B](t_0)$$

$$[B]_{0} = [B](t_{0})$$

$$[A]_{n+1} \approx [A]_{n} + (k_{b} \cdot [B]_{n} - k_{a} \cdot [A]_{n}) \cdot \Delta t \qquad (n \ge 1)$$

$$[B]_{n+1} \approx [B]_{n} + (k_{a} \cdot [A]_{n} - k_{b} \cdot [B]_{n}) \cdot \Delta t \qquad (n \ge 1)$$

$$[B]_{n+1} \approx [B]_n + (k_a \cdot [A]_n - k_b \cdot [B]_n) \cdot \Delta t \qquad (n \ge 1)$$

1.2.5.2 Exakte Lösung ohne Beweis

Die exakte Lösung ist (Lösung eines linearen Differentialgleichungssystems):

$$[A](t) = \frac{k_b ([A]_0 + [B]_0)}{k_b + k_a} + \frac{[A]_0 \cdot k_a - k_b \cdot [B]_0}{k_b + k_a} \cdot e^{-(k_b + k_a)t}$$
$$[B](t) = [A]_0 + [B]_0 - [A](t)$$

1.2.5.3 Gleichgewicht

$$\lim_{t \to 0} [A](t) = \lim_{t \to 0} \frac{k_b([A]_0 + [B]_0)}{k_b + k_a} + \frac{[A]_0 \cdot k_a - k_b \cdot [B]_0}{k_b + k_a} \cdot e^{-(k_b + k_a)t} = \frac{k_b([A]_0 + [B]_0)}{k_b + k_a}$$

Im Gleichgewicht gilt für die Konzentration von [A] und [B]:

$$\lim_{t \to 0} [A](t) = \frac{k_b([A]_0 + [B]_0)}{k_b + k_a}$$

$$\lim_{t \to 0} [B](t) = [A]_0 + [B]_0 - \frac{k_b([A]_0 + [B]_0)}{k_b + k_a}$$

1.2.6 Konkretes Beispiel

Voraussetzungen:

[A]₀ = 1000 g/l; [B]₀ = 2000 g/l; $k_a = 0.1/s$; $k_b = 0.01/s$; $\Delta t = 1 s$

n	t _n	[A](t _n)	[B](t _n)	$[A](t_n)$	[B](t _n)
0	$0 \cdot 1s =$	0,01/s ·2000 g/l -	80 g/ 1·s	1000 g/l	2000 g/l
	0s	0,1/s · 1000 g/l	_		
		$= -80 \text{ g/l} \cdot \text{s}$		(0)	(0)
		(1)	(1)	(0)	(0)
1	$1 \cdot 1s =$	0,01/s ·2008 g/l -	79,12 g/ l·s	1000 g/l +	2000 g/l +
	1s	0,1/s ·992 g/l		$-80 \text{ g/ } 1 \cdot \text{s} \cdot 0.1 \text{ s}$	80 g/ l·s ·0,1 s
		$= -79,12 \text{ g/l} \cdot \text{s}$		= 992 g/l	= 2008 g/l
		(3)	(3)	(2)	(2)
2	$2 \cdot 1s =$	0,01/s ·2015,912 g/l -	78,24968 g/ l·s	992 g/l +	2008 g/l +
	2s	0,1/s ·984,088 g/l		$-79,12 \text{ g/ l} \cdot \text{s} \cdot 0,1/\text{s}$	79,12 g/ l·s ·0,1 s
		$= -78,24968 \text{ g/ l} \cdot \text{s}$,	= 984,088 g/l	= 2015,912 g/l
		(5)	(5)	(4)	(4)
3	$3 \cdot 1s =$	0,01/s ·2023,736968 g -	77,38893352 g/ l·s	984,088 g/l +	2015,912 g/l +
	3s	0,1/s ·976,263032 g		-78,24968 g/ l·s ·0,1s	78,24968 g/ l·s ·0,1 s
		= -77,38893352 g/ l·s		= 976,263032 g/l	= 2023,736968 g/l
		(7)	(7)	(6)	(6)

Bemerkung:

Die Zahlen (0), (1), (2), usw. in der Tabelle geben die Reihenfolge der Berechnungen in der Tabelle an.

1.2.7 Umsetzung in Excel

a) Geben Sie für k_a , k_b , $[A]_0$, $[B]_0$ und Δt die von Ihnen bestimmten (z.B. $k_a = 0.1/s$ $k_b = 0.01/s$, $[A]_0 = 1000$ g, $[B]_0 = 2000$ g, $\Delta t = 0.1$ s) Werte in die von Ihnen vorgesehenen Zellen ein.

Erzeugen Sie die Wertetabelle für n, t_n , $[A]_n$, $[B]_n$, $[A]_n$, $[B]_n$, in der die Zeit t_n (= n · Δt) nach n Zeitabschnitten, die Konzentrationenänderungen $[A]_n$, $[B]_n$, die Massen $[A]_n$, $[B]_n$ in Abhängigkeit von 0, 1, 2, ..., n Zeitabschnitten dargestellt wird.

b) Der exakte Wert der Konzentrationen [A] und [B] in Abhängigkeit von der Zeit t beträgt:

$$[A](t) = \frac{k_b([A]_0 + [B]_0)}{k_b + k_a} + \frac{[A]_0 \cdot k_a - k_b \cdot [B]_0}{k_b + k_a} \cdot e^{-(k_b + k_a)t}$$

$$[B](t) = [A]_0 + [B]_0 - [A](t)$$

Nehmen Sie den exakten Werte der Konzentrationen $[Ae]_n$ und $[Be]_n$ nach n Zeiteinheiten in die Wertetabelle mit auf.

c) Erzeugen Sie ein Diagramm, in dem $[A]_n$ und $[Ae]_n$ (bzw. $[B]_n$ und $[Be]_n$) in Abhängigkeit von $t = t_n$ dargestellt wird.

Der letzte Eintrag aus der Wertetabelle soll 99,9% der Endkonzentration anzeigen.

2 Spieltheoretisches Modell

2.1 Modellbeschreibung

Die chemische Reaktion wird durch ein Kugelspiel modelliert. Dabei gilt folgende Zuordnung:

Chemische Reaktion	Kugelspiel
Moleküle des Stoffs A und B im	weiße und schwarze Kugel in einer
Reaktionsgefäß.	Urne.
Je Zeiteinheit hat eine bestimmte	Je Zeiteinheit hat eine weiße Kugel im
Anzahl von Molekülen des Stoffes A	Falle ihrer Ziehung danach mit einer
die Chance durch Stöße	(z.B. durch einen Würfel ermittelten)
(Energieübertragung) in Moleküle des	bestimmten Wahrscheinlichkeit die
Stoffs B umgewandelt zu werden.	Chance in eine schwarze umgewandelt
Diese Anzahl hängt von der	zu werden.
Konzentration des Stoffs A und davon	Diese Chance (der Umwandlung) hängt
ab, ob der Stoss genügend energiereich	von der Anzahl (Konzentration) der
war (größer als die dazu notwendige	weißen Kugeln in der Urne ab und
Aktivierungsenergie ist).	davon, ob z.B. mit einem Würfel die
Das Analoge gilt für die Moleküle des	"Sechs" gespielt wurde.
Stoffes B.	Das Analoge macht man danach mit
	der schwarzen Kugel.

2.2 Beispiel

Es wird eine Urne mit 2000 weißen und 1000 schwarzen Kugeln aufgestellt.

- 1) Es wird aus der Urne eine Kugel gezogen.
- a) Wenn eine weiße Kugel gezogen wurde, dann wird ein Würfel geworfen.
 - a1) Wenn eine 6 gewürfelt wurde, dann wird die weiße Kugel durch eine schwarze Kugel ausgetauscht.
 - a2) Wenn keine 6 gewürfelt wurde, dann wird die weiße Kugel wieder in die Urne zurückgelegt.
- b) Wenn keine weiße Kugel gezogen wurde (sondern eine schwarze), dann wird die Kugel wieder in die Urne zurückgelegt.
- 2) Das analoge wird nun mit den schwarzen Kugeln gemacht:
- a) Es wird aus der Urne eine Kugel gezogen.

Wenn eine schwarze Kugel gezogen wurde, dann wird ein Würfel geworfen.

- a1) Wenn eine 1 oder 2 gewürfelt wurde, dann wird die schwarze Kugel durch eine weiße ausgetauscht.
- a2) Wenn keine 1 oder 2 gewürfelt wurde, dann wird die schwarze Kugel wieder in die Urne zurückgelegt.
- b) Wenn keine schwarze Kugel gezogen wurde (sondern eine weiße), dann wird die Kugel wieder in die Urne zurückgelegt.
- 3) Es wird immer wieder abwechselnd 1) und 2) durchgeführt. Nach einer bestimmten Anzahl Ziehungen wird das Spiel abgebrochen. Jede Ziehung - ob erfolgreich oder nicht - zählt als eine Zeiteinheit.

2.2.1 Umsetzung in Excel

a) Geben Sie für p_1 , p_2 , w_0 , s_0 die von Ihnen bestimmten (z.B. $p_w = 0.1$ $p_s = 0.01$, $w_0 = 1000$, $s_0 = 2000$) Werte in die von Ihnen vorgesehenen Zellen ein.

Erzeugen Sie die Wertetabelle für n, w_n , s_n , in der die Zeit t_n (= n Δt) nach n Zeitabschnitten, die Anzahl der weissen Kugeln w_n , die Anzahl der schwarzen Kugeln s_n in Abhängigkeit von 0, 1, 2, ..., n Zeitabschnitten dargestellt wird.

c) Erzeugen Sie ein Diagramm, in dem w_n und s_n in Abhängigkeit von $t = t_n$ dargestellt wird.

Gleichgewicht

g: Gesamtanzahl der schwarzen und weißen Kugeln = $s_0 + w_0$

 s_n : Anzahl schwarzer Kugeln nach n Ziehungen

w_n: Anzahl weißer Kugeln nach n Ziehungen

pw: Wahrscheinlichkeit der Aktivierung einer weißen Kugel

 $p_s: \quad \text{Wahrscheinlichkeit der Aktivierung einer schwarzer Kugel}$

s: Anzahl der schwarzer Kugeln im Gleichgewichtszustand

w: Anzahl der weißen Kugeln im Gleichgewichtszustand

Im Gleichgewichtszustand gilt:

$$s \cdot p_s = w \cdot p_w \qquad \text{und} \qquad s \cdot p_s = w \cdot p_w$$

$$(g - w) \cdot p_s = w \cdot p_w \qquad s \cdot p_s = (g - s) \cdot p_w$$

$$w = \frac{g \cdot p_s}{p_w + p_s} \qquad s = \frac{g \cdot p_w}{p_w + p_s}$$

zusammengefaßt:

$$s = \frac{g \cdot p_w}{p_w + p_s}$$

$$w = \frac{g \cdot p_s}{p_w + p_s}$$

Bemerkung:

Eine hervorragende Ausarbeitung zu diesem Themenkreis befindet sich unter: http://www.jkrieger.de/bzr/